|
|
Research on Multi Coil Reactive Shielding of Resonant Wireless Energy Supply Cardiac Pacemaker |
Chen Weihua, Liu Zongwang, Li Zhengxing, Yan Xiaoheng, Qian Kun |
Faculty of Electrical and Control Engineering Liaoning Technology University Huludao 125000 China |
|
|
Abstract To reduce the harm to human body caused by magnetic field leak of the cardiac pacemaker wireless power supply system, a resonant multi-coil reactive power shielding cardiac pacemaker wireless power supply system under 150kHz is designed. First, the LCC-C compensation circuit model is established. Then the magnetic field distribution and transmission efficiency of three shielding coils with different loops and turns are simulated as well as the electromagnetic-temperature field distribution of a human body half-length model. Afterwards the optimal ring circuit and turns of the shielding coil are obtained via studying the resonant reactive power shielding coil principle and the simulation results. Finally the experimental results show that under the 3-ring-5-turn optimal shielding structure, the magnetic flux density is reduced by 20.22% at 35mm from the center point, and the transmission efficiency reaches 76.03%. The internal temperature rises by 1.01℃, meeting the implantable device safety regulations. The multi-coil reactive shielding structure can effectively reduce electromagnetic leakage of the WPT system, providing new ideas for wireless energy supply system design for implantable devices.
|
Received: 22 April 2021
|
|
|
|
|
[1] Santini M, Cappato R, Andresen D.Current state of knowledge and experts’ perspective on the subcutaneous implantable cardioverter-defibrillator[J]. Journal of Interventional Cardiac Electrophysiology, 2009, 25(1): 83-88. [2] Zhao Jinwei, Ghannam R, Yuan Mengyao.Design test and optimization of inductive coupled coils for implantable. biomedical devices[J]. Journal of Low Power Electronics, 2019, 15(1): 76-86. [3] Jow U M, Ghovanloo M.Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission[J]. IEEE Transactions on Biomedical Circuits and Systems, 2007, 1(3): 193-202. [4] Shaw T, Mitra D.Metasurface-based radiative near-field wireless power transfer system for implantable medical devices[J]. IET Microwaves, Antennas and Propagation, 2019, 13(12): 1974-1982. [5] Campi T, Cruciani S, Santis V D, et al.Near field wireless powering of deep medical implants[J]. Energies, 2019, 12(14): 2720-2724. [6] Campi T, Cruciani S, Palandrani F.Wireless power transfer charging system for AIMDs and pacemakers[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(2): 633-642. [7] Ramrakhyani A K, Mirabbasi S, Chiao M.Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants[J]. IEEE Transactions on Biomedical Circuits and Systems, 2011, 5(1): 48-63. [8] Xiao Chunyan, Cheng Dingning, Wei Kangzheng.An LCC-C compensated wireless charging system for implantable cardiac pacemakers: theory, experiment, and safety evaluation[J]. IEEE Transactions on Power Electronics, 2018, 33(6): 4894-4905. [9] Xiao Chunyan, Wei Kangzheng, Cheng Dingning, et al.Wireless charging system considering eddy current in cardiac pacemaker shell: theoretical modeling, experiments, and safety simulations[J]. IEEE Transactions on Industrial Electronics, 2017, 64(5): 3978-3988. [10] 周辉. 磁屏蔽技术的仿真研究[D]. 长沙: 湖南大学, 2014. [11] 陈国东, 吴剑青, 孙跃, 等. 基于互感差异的双拾取无线电能传输系统功率分配控制策略[J]. 电力系统自动化, 2018, 42(21): 214-223. Chen Guodong,Wu Jianqing,Sun Yue,et al.Power distribution control strategy of wireless power transfer system with dual-pick-up coils based on mutual inductance difference[J]. Automation of Electric Power Systems, 2018, 42(21): 214-223. [12] Tang S, Hui S, Chung H.Evaluation of the shielding effects on printed-circuit-board transformers using ferrite plates and copper sheets[J]. IEEE Transactions on Power Electronics, 2002, 17(6): 1080-1088. [13] 薛明, 杨庆新, 章鹏程, 等. 无线电能传输技术应用研究现状与关键问题[J]. 电工技术学报, 2021, 36(8): 1547-1568. Xue Ming,Yang Qingxin, Zhang Pengcheng, et al.Application status and key Issues of wireless power transmission technology[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1547-1568. [14] 贾金亮, 闫晓强. 磁耦合谐振式无线电能传输特性研究动态[J]. 电工技术学报, 2020, 35(20): 4217-4231. Jia Jinliang, Yan Xiaoqiang.Research tends of magnetic coupling resonant wireless power transfer characteristics[J]. Transactions of China Electrotechnical Society, 2020, 35(20): 4217-4231. [15] 沈栋, 杜贵平, 丘东元, 等. 无线电能传输系统电磁兼容研究现况及发展趋势[J]. 电工技术学报, 2020, 35(13): 2855-2869. Shen Dong, Du Guiping, Qiu Dongyuan, et al.Research status and development trend of electromagnetic compatibility of wireless power transmission system[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2855-2869. [16] 沈栋, 杜贵平, 丘东元, 等. 无线电能传输系统电磁兼容研究现况及发展趋势[J]. 电工技术学报, 2020, 35(13): 2855-2869. Shen Dong, Du Guiping, Qiu Dongyuan, et al.Research status and development trend of electroma-gnetic compatibility of wireless power transmission system[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2855-2869. [17] 范兴明, 高琳琳, 莫小勇, 等. 无线电能传输技术的研究现状与应用综述(英文)[J]. 电工技术学报, 2019, 34(7): 1353-1380. Fan Xingming, Gao Linlin, Mo Xiaoyong, et al.Overview of research status and application of wireless power transmission technology[J]. Transactions of China Electrotechnical Society, 2019, 34(7): 1353-1380. [18] 张波, 疏许健, 吴理豪, 等. 无线电能传输技术亟待解决的问题及对策[J]. 电力系统自动化, 2019, 43(18): 1-12. Zhang Bo, Shu Xujian, Wu Lihao, et al.Problems of wireless power transmission technology urgent to be solved and corresponding countermeasures[J]. Automation of Electric Power Systems, 2019, 43(18): 1-12. [19] 廖志娟, 冯其凯, 吴凡, 等. 磁耦合无线电能传输系统实本征态工作模式及能效特性分析[J].电力系统自动化, 2022, 46(3):164-174. Liao Zhijuan, Feng Qikai, et al.Real eigenstate operating modes and energy efficiency characteristic analysis of magnetic coupling wireless power transfer system[J]. Automation of Electric Power Systems, 2022,46(3):164-174 [20] 张波, 荣超, 江彦伟, 等. 分数阶无线电能传输机理的提出及研究进展[J]. 电力系统自动化, 2022, 46(4): 197-207. Zhang Bo, Rong Chao, Jiang Yanwei, et al.Proposal process and research progress of fractional order wireless power transfer mechanism[J]. Automation of Electric Power Systems, 2022,46(4):197-207. [21] Campi T, Cruciani S, Maradei F.Magnetic field mitigation by multicoil active shielding in electric vehicles equipped with wireless power charging system[J]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62(4): 1398-1405. [22] Umeneia E, Schwannecke J, Velpulas, et al. Novel method for selective nonlinear flux guide switching forcon tactless inductive power transfer[J]. IEEE Transactions on Magnetics, 2012, 48(7): 2192-2195. [23] Du Yaping, Cheng T C, Farag A S.Principles of power-frequency magnetic field shielding with flat sheets in a source of long conductors[J]. IEEE Transactions on Electromagnetic Compatibility, 1996, 38(3): 450-459. [24] Canova A, Del-Pino-Lopezj C, Giacconel L, et al. Active shielding system for ELF magnetic fields[J]. IEEE Transactions on Magnetics, 2015, 51(3): 1-4. [25] 李睿泽, 杨庆新, 李永建, 等. 邻近耦合无线电能传输系统的高效屏蔽设计与优化[J]. 电力系统自动化, 2019, 43(21): 163-169. Li Ruize, Yang Qingxin, Li Yongjian, et al.Efficient shielding design and optimization of wireless power transfer system with proximity coupling[J]. Automation of Electric Power Systems, 2019, 43(21): 163-169. [26] Jeong S, Kim D H, Song J.Smartwatch strap wireless power transfer system with flexible PCB coil and shielding material[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5): 4054-4064. [27] Park J, Kim D, Hwang K.A resonant reactive shielding for planar wireless power transfer system in smartphone application[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(2): 695-703. [28] Hong S, Kim Y, Lee S.A frequency-selective EMI reduction method for tightly coupled wireless power transfer systems using resonant frequency control of a shielding coil in smartphone application[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(6): 2031-2039. [29] Suhel S M, Maurya R.A new switching sequences of SVPWM for six-phase induction motor with features of reduced switching losses[J]. CES Transactions on Electrical Machines and Systems, 2021, 5(2): 100-107. [30] This N.Guidelines for limiting exposure to time-varying electric and magnetic fields (1Hz TO 100kHz)[J]. Health Physics, 2010, 99(6): 818-836. [31] Ziegelberger G, Croft R, Feychting M, et al.Guidelines for limiting exposure to electromagnetic fields (100kHz to 300GHz)[J]. Health Physics, 2020, 118(5): 483-524. [32] Pennes H H.Analysis of tissue and arterial blood temperatures in the resting human forearm[J]. Journal of Applied Physiology, 1948, 1(2): 93-122. [33] Campi T, Cruciani S, De Santis V, et al.Induced effects in a pacemaker equipped with a wireless power transfer charging system[J]. IEEE Transactions on Magnetics, 2017, 53(6): 1-4. [34] Mcintosh R L, Anderson V.A comprehensive tissue properties database provided for the thermal assessment of a human at rest[J]. Biophysical Reviews and Letters, 2010, 5(3): 129-151. [35] Kim D, Jeong D, Kim J, et al.Design and implementation of a wireless charging-based cardiac monitoring system focused on temperature reduction and robust power transfer efficiency[J]. Energies, 2020, 13(4): 1008. |
|
|
|