|
|
Stability Analysis and Improvement Design of Current Loop of Ultra-High-Speed Permanent Magnet Motor Drive System |
Bao Xucong, Wang Xiaolin, Gu Cong, Shi Tengrui |
School of Automation Nanjing University of Aeronautics and Astronautics Nanjing 211106 China |
|
|
Abstract The delay of the drive system of ultra-high speed permanent magnet motor will seriously affect the stability of the system under the operating condition of ultra-high fundamental frequency. In this paper, the dynamic model of the current loop is accurately reconstructed, and the influence of cross-coupling and delay effect on the system stability is systematically analyzed under high fundamental frequency operating conditions. Accordingly, a damp-integral current loop regulation mechanism is proposed for ultra-high-speed motors based on double sampling current prediction. By compensating the damping ratio of the system, the additional cross-coupling effect is eliminated. In addition, a two-sampling current prediction algorithm with piecewise execution is designed, which can realize the prediction of the next beat feedback current without relying on any parameters and effectively compensate the system stability margin. The above two measures provide a strong guarantee for the global stability of ultra-high fundamental frequency system. Finally, a 550 000r/min/110W ultra-high-speed experimental prototype platform was used to fully simulate and analyze the proposed improved current loop regulation mechanism, which verified the effectiveness and superiority of the proposed scheme.
|
Received: 26 October 2020
|
|
|
|
|
[1] 周天豪, 杨智, 祝长生, 等. 电磁轴承高速电机转子系统的内模-PID控制[J]. 电工技术学报, 2020, 35(16): 3414-3425. Zhou Tianhao, Yang Zhi, Zhu Changsheng, et al.Internal model control-PID control of an active magnetic bearing high-speed motor rotor system[J]. Transactions of China Electrotechnical Society, 2020, 35(16): 3414-3425. [2] 寇宝泉, 葛庆稳, 张浩泉, 等. 双边错位高速永磁直线同步电机的设计与分析[J]. 电工技术学报, 2021, 36(6): 1149-1158. Kou Baoquan, Ge Qingwen, Zhang Haoquan, et al.Design and analysis of double-sided dislocated high speed permanent magnet linear synchronous motors[J]. Transactions of China Electrotechnical Society, 2021, 36(6): 1149-1158. [3] Sarlioglu B, Morris C T.More electric aircraft: review, challenges, and opportunities for commercial transport aircraft[J]. IEEE Transactions on Transport- ation Electrification, 2015, 1(1): 54-64. [4] Tenconi A, Vaschetto S, Vigliani A.Electrical machines for high-speed applications: design con- siderations and tradeoffs[J]. IEEE Transactions on Industrial Electronics, 2014, 61(6): 3022-3029. [5] Gerada D, Mebarki A, Brown N L, et al.High-speed electrical machines: technologies, trends, and developments[J]. IEEE Transactions on Industrial Electronics, 2014, 61(6): 2946-2959. [6] 张凤阁, 杜光辉, 王天煜, 等. 高速电机发展与设计综述[J]. 电工技术学报, 2016, 31(7): 1-18. Zhang Fengge, Du Guanghui, Wang Tianyu, et al.Review on the development and design of high speed machines[J]. Transactions of China Electrotechnical Society, 2016, 31(7): 1-18. [7] Kolondzovski Z, Arkkio A, Larjola J, et al.Power limits of high-speed permanent-magnet electrical machines for compressor applications[J]. IEEE Transactions on Energy Conversion, 2010, 26(1): 73-82. [8] Ma Xiaohe, Su Rong, Jet T K, et al.Review of high-speed electrical machines in gas turbine elec- trical power generation[C]//IEEE Region 10 Conference, Macao, China, 2015: 1-9. [9] Epstein A H.Millimeter-scale, micro-electro-mechanical systems gas turbine engines[J]. Journal of Engineering for Gas Turbines and Power, 2004, 126(2): 205-226. [10] 余志强, 孙晓云, 邱清泉, 等. 电机外置式径向型高温超导飞轮储能系统样机悬浮测试及旋转实验[J]. 电工技术学报, 2019, 34(10): 2166-2175. Yu Zhiqiang, Sun Xiaoyun, Qiu Qingquan, et al.Levitation test and rotation experiment of radial-type superconducting flywheel energy storage system prototype with external motor[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2166-2175. [11] Krishnan R.永磁无刷电机及其驱动技术[M]. 北京: 机械工业出版社, 2013. [12] Choi C, Lee W.Analysis and compensation of time delay effects in hardware-in-the-loop Simulation for automotive PMSM drive system[J]. IEEE Transa- ctions on Industrial Electronics, 2012, 59(9): 3403-3410. [13] 国敬, 范涛, 章回炫, 等. 高速低载波比下永磁同步电机电流环稳定性分析[J]. 中国电机工程学报, 2019, 39(24): 7336-7346. Guo Jing, Fan Tao, Zhang Huixuan, et al.Stability analysis of permanent magnet synchronous motor current loop control at high speed and low carrier ratio[J]. Proceedings of the CSEE, 2019, 39(24): 7336-7346. [14] Bae B H, Sul S K.A compensation method for time delay of full-digital synchronous frame current regulator of PWM AC drives[J]. IEEE Transactions on Industry Applications, 2003, 39(3): 802-810. [15] Novak M, Novak Z.Stability issues of high-speed PMSM feedback control systems[C]//15th European Conference on Power Electronics and Applications (EPE), Lille, France, 2013: 1-9. [16] Holmes D G, Lipo T A, Mcgrath B P, et al.Optimized design of stationary frame three phase AC current regulators[J]. IEEE Transactions on Power Electro- nics, 2009, 24(11): 2417-2426. [17] 伍小杰, 袁庆庆, 符晓, 等. 基于复矢量调节器的低开关频率同步电机控制[J]. 中国电机工程学报, 2012, 32(3): 124-129. Wu Xiaojie, Yuan Qingqing, Fu Xiao, et al.A novel complex state current controller for synchronous motors at very low switching frequency[J]. Pro- ceedings of the CSEE, 2012, 32(3): 124-129. [18] Holtz J, Quan J, Schmittt G, et al.Design of fast and robust current regulators for high power drives based on complex state variables[C]//Industrial Application Society Annual Meeting, Salt Lake City, UT, USA, 2003: 1997-2004. [19] 邹常跃, 刘邦银, 段善旭, 等. 并网逆变器中数字控制延时对系统稳定性的影响及其优化设计[J]. 中国电机工程学报, 2015, 35(2): 411-417. Zou Changyue, Liu Bangyin, Duan Shanxu, et al.Influence of delay on system stability and its optimization in grid-connected inverters[J]. Pro- ceedings of the CSEE, 2015, 35(2): 411-417. [20] 董方明. 基于减小延时和采样补偿的LCL型并网逆变器有源阻尼研究[D]. 武汉: 华中科技大学, 2017. [21] Schmirgel H, Krah J O, Berger R.Delay time compensation in the current control loop of servo drives-higher bandwidth at no trade-off[C]//Power Conversion Intelligent Motion Conference, Shanghai, China, 2006: 541-546. [22] Klarenbach C, Schmirgel H, Krah J O.Design of fast and robust current controllers for servo drives based on space vector modulation[J]. Power Conversion Intelligent Motion Conference, Beijing, China, 2011: 182-188. [23] Borisavljevic A, Brands M, Lomonova E.Vector control of very-high-speed PM machines[C]//Inter- national Conference on Electrical Machine, Marseille, France, 2012: 2462-2468. [24] Uddin M, Mekhilef S, Nakaoka M, et al.Model predictive control of induction motor with delay time compensation: an experimental assessment[C]//Applied Power Electronics Conference and Exposition, Charlotte, USA, 2015: 543-548. [25] Lee M, Kong K.Fourier-series-based phase delay compensation of brushless DC motor systems[J]. IEEE Transactions on Power Electronics, 2018, 33(1): 525-534. [26] Bibian S, Jin H.Time delay compensation of digital control for DC switchmode power supplies using prediction techniques[J]. IEEE Transactions on Power Electronics, 2000, 15(5): 835-842. [27] Lu Minghui, Wang Xiongfei, Loh P C, et al.Graphical evaluation of time-delay compensation techniques for digitally controlled converters[J]. IEEE Transactions on Power Electronics, 2018, 33(3): 2601-2614. [28] Yang Dongsheng, Ruan Xinbo, Wu Heng.A real-time computation method with dual sampling mode to improve the current control performance of the LCL- type grid-connected inverter[J]. IEEE Transactions on Industrial Electronics, 2015, 62(7): 4563-4572. [29] 孙素娟, 翟炜, 瞿兴鸿, 等. 可适应宽频带的抗混叠有源阻尼控制策略[J]. 中国电机工程学报, 2015, 35(20): 5310-5316. Sun Sujuan, Zhai Wei, Qu Xinghong, et al.Antialiasing active damping control strategy adaptable for wide band[J]. Proceedings of the CSEE, 2015, 35(20): 5310-5316. |
|
|
|