|
|
Effect of Plasma Surface Step Gradient Silicon Deposition on Flashover Properties of Epoxy Resin |
Yan Jiyuan1,2, Liang Guishu1, Duan Qijun1,2, Ruan Haoou1,2, Kang Yuchan1, Peng Chengkai1, Xie Qing1,2 |
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China; 2. Electrical and Electronic Engineering North China Electric Power University Baoding 071003 China |
|
|
Abstract The basin insulator in gas insulated transmission line is suffered from the non-uniform electric field for a long time. The surface charge accumulation caused by local high field intensity will further distort the external electric field, which will trigger to the partial discharge and even the flashover along the surface. The conventional uniform modification method is difficult to take into account the insulation requirements of different field strength areas, and it is difficult to achieve the best effect on the overall insulation performance. In this paper, atmospheric pressure plasma jet technology are used to realize step plasma gradient silicon deposition on the surface alumina/epoxy resin surface. The results show that the material surface is covered with different thickness of silicon oxide film by step gradient plasma silicon deposition, which can construct step gradient distribution of surface roughness, surface conductivity and trap level. This method can control the charge dissipation rate of different surface areas, and increase the flashover voltage up to 31.1% at most, which is significantly higher than that of unmodified and uniformly modified materials. The analysis shows that, on the one hand, the surface conductivity with gradient distribution can effectively reduce the maximum electric field strength of needle electrodes and reduce the electric field distortion. On the other hand, when the surface charge dissipation in high field intensity region is accelerated and the surface charge dissipation rate is properly controlled, the advantages of plasma silicon deposition can be exerted and the adverse effects can be reduced, and the flashover performance of the material along the surface can be improved to the maximum extent.
|
Received: 06 April 2021
|
|
|
|
|
[1] 汤广福, 庞辉, 贺之渊. 先进交直流输电技术在中国的发展与应用[J]. 中国电机工程学报, 2016, 36(7): 1760-1771. Tang Guangfu, Pang Hui, He Zhiyuan.R&D and application of advanced power transmission technology in China[J]. Proceedings of the CSEE, 2016, 36(7): 1760-1771. [2] 高克利, 颜湘莲, 刘焱, 等. 环保气体绝缘管道技术研究进展[J]. 电工技术学报, 2020, 35(1): 33-50. Gao Keli, Yan Xianglian, Liu Yan, et al.Progress of technology for environment-friendly gas insulated transmission line[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 33-50. [3] 李鹏, 颜湘莲, 王浩, 等. 特高压交流GIL输电技术研究及应用[J]. 电网技术, 2017, 41(10): 3161-3167. Li Peng, Yan Xianglian, Wang Hao, et al.Research and application of UHVAC gas-insulated transmission line[J]. Power System Technology, 2017, 41(10): 3161-3167. [4] 肖登明, 阎究敦. 气体绝缘输电线路(GIL)的应用及发展[J]. 高电压技术, 2017, 43(3): 699-707. Xiao Dengming, Yan Jiudun.Application and development of gas insulated transmission line (GIL)[J]. High Voltage Engineering, 2017, 43(3): 699-707. [5] Du B X, Liang H C, Li J, et al.Electrical field distribution along SF6/N2 filled DC-GIS/GIL epoxy spacer[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(4): 1202-1210. [6] Liang Hucheng, Du Boxue, Li Jin, et al.Mechanical stress distribution and risk assessment of 110kV GIS insulator considering Al2O3 settlement[J]. High Voltage, 2019, 3(4): 65-71. [7] Li Chuanyang, Hu Jun, Lin Chuanjie, et al.The control mechanism of surface traps on surface charge behavior in alumina-filled epoxy composites[J]. Journal of Physics D: Applied Physics, 2016, 49(44): 445304. [8] 张博雅, 张贵新. 直流GIL中固-气界面电荷特性研究综述Ⅱ:电荷调控及抑制策略[J]. 电工技术学报, 2018, 33(22): 5145-5158. Zhang Boya, Zhang Guixin.Review of charge accumulation characteristics at gas-solid interface in DC GIL, Part Ⅱ: charge control and suppression strategy[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 5145-5158. [9] Zhou Hongyang, Ma Cuoming, Li Chengrong, et al.Impact of temperature on surface charges accumulation on insulators in SF6-filled DC-GIL[J] IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(1): 601-610. [10] Shao Tao, Kong Fei, Lin Haofan, et al.Correlation between surface charge and DC surface flashover of plasma treated epoxy resin[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(4): 1267-1274. [11] Li Shengtao.Improvement of surface flashover in vacuum[J]. High Voltage, 2020, 5(2): 122-133. [12] Shinya I, Ken Y, Koichi M, et al.The surface modification of poly (tetrafluoroethylene) film using dielectric barrier discharge of intermittent pulse voltage[J]. Surface and Coatings Technology, 2000, 130(1): 52-56. [13] 申巍, 李枕, 李盛涛. 电子束辐照处理环氧纳米复合材料沿面闪络性能提升及机理[J]. 中国电机工程学报, 2020, 40(22): 7144-7153. Shen Wei, Li Zhen, Li Shengtao.Improvement and mechanism of surface flashover performances of epoxy nanocomposites treated by electron beam irradiation[J]. Proceedings of the CSEE, 2020, 40(22): 7144-7153. [14] 李进, 杜伯学, 李忠磊, 等. 表面氟化对聚酰亚胺薄膜吸水特性及其击穿电压和表面电荷特性的影响[J]. 高电压技术, 2016, 42(9): 2943-2949. Li Jin, Du Boxue, Li Zhonglei, et al.Effects of surface fluorination on the water absorption behaviors, breakdown voltage and surface charge characteristic of polyimide films[J]. High Voltage Engineering, 2016, 42(9): 2943-2949. [15] Yin Kai, Xie Qing, Ruan H O, et al.Causation of ultra-high surface insulation of Bi0.95Y0.05FeO3/epoxy composites: simultaneous sine-variations of dielectric and trap properties with filler content[J]. Composites Science and Technology, 2020, 197: 108199. [16] 谢庆, 段祺君, 邵帅, 等. BTO纳米纤维及其等离子体氟化对EP复合材料表面绝缘特性的影响[J]. 中国电机工程学报, 2020, 40(12): 4051-4063. Xie Qing, Duan Qijun, Shao Shuai, et al.Effect of barium titanate nanofibers and plasma fluorination on surface insulation properties of epoxy resin composites[J]. Proceedings of the CSEE, 2020, 40(12): 4051-4063. [17] 律方成, 刘春博, 詹振宇, 等. 等离子体氟化纳米SiC/环氧复合涂层对环氧树脂闪络特性的影响[J]. 高电压技术, 2020, 46(7): 2444-2452. Lü Fangcheng, Liu Chunbo, Zhan zhenyu, et al. Effect of plasma fluorinated nano-SiC/epoxy composite coating on the flashover characteristics of epoxy resin[J]. High Voltage Engineering, 2020, 46(7): 2444-2452. [18] 杜伯学, 杜强, 李进, 等. 气体绝缘输电管道用环氧树脂/氮化硼高导热复合材料表面电荷动态特性[J]. 高电压技术, 2018, 44(8): 2646-2653. Du Boxue, Du Qiang, Li Jin, et al.Surface charge dynamic behaviors of epoxy/BN composite with high thermal conductivity for gas insulated transmission pipeline[J]. High Voltage Engineering, 2018, 44(8): 2646-2653. [19] Li Chuanyang, Hu Jun, Lin Chuanjie, et al.The potentially neglected culprit of DC surface flashover: electron migration under temperature gradients[J]. Scientific Reports, 2017, 7(1): 1-11. [20] 于开坤, 张冠军, 郑楠, 等. 表面激光处理对氧化铝陶瓷真空中闪络特性的影响[J]. 电工技术学报, 2009, 24(1): 28-34. Yu Kaikun, Zhang Guanjun, Zheng Nan, et al.Effects of surface laser treatment on flashover characteristics across alumina ceramics in vacuum[J]. Transactions of China Electrotechnical Society, 2009, 24(1): 28-34. [21] 于开坤, 张冠军, 穆海宝, 等. 表面处理对可加工陶瓷真快沿面闪络特性的影响[J]. 电工技术学报, 2012, 27(5): 115-131. Yu Kaikun, Zhang Guanjun, Mu Haibao, et al.Effect of different surface treatment on the surface flashover characteristics of machinable ceramic in vacuum[J]. Transactions of China Electrotechnical Society, 2012, 27(5): 115-131. [22] Xue Jianyi, Wang Han, Chen Junhong, et al.Effects of surface roughness on surface charge accumulation characteristics and surface flashover performance of alumina-filled epoxy resin spacers[J]. Journal of Applied Physics, 2018, 124(8): 083302. [23] An Zhenlian, Yin Qianqian, Liu Yaqiang, et al.Modulation of surface electrical properties of epoxy resin insulator by changing fluorination temperature and time[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(1): 526-534. [24] 张海宝, 陈强. 非热等离子体材料表面处理及功能化研究进展[J]. 物理学报, 2021, 70(9): 14-32. Zhang Haibao, Chen Qiang.Recent progress of non-thermal plasma material surface treatment and functionalization[J]. Acta Physica Sinica, 2021, 70(9): 14-32. [25] 邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3): 685-705. Shao Tao, Zhang Cheng, Wang Ruixue, et al.Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-705. [26] Seok D C, Yoo S R, Lee K I, et al.Relation between etching profile and voltage-current shape of sintered SiC etching by atmospheric pressure plasma[J]. Plasma Science & Technology, 2019, 21(4), DOI: 10.1088/2058-6272/aaf9eq. [27] Chen Sile, Wang Shuai, Wang Yibo, et al.Surface modification of epoxy resin using He/CF4 atmospheric pressure plasma jet for flashover withstanding characteristics improvement in vacuum[J]. Applied Surface Science, 2017, 414: 107-113. [28] Xie Qing, Lin Haofan, Zhang Shuai, et al.Deposition of SiCxHyOz thin film on epoxy resin by nanosecond pulsed APPJ for improving the surface insulating performance[J]. Plasma Science & Technology, 2018, 20(2): 025504. [29] 林浩凡, 王瑞雪, 谢庆, 等. 等离子体射流快速改性促进表面电荷衰减[J]. 电工技术学报, 2017, 32(16): 256-264. Lin Haofan, Wang Ruixue, Xie Qing, et al.Rapid surface modification by plasma jet to promote surface charge decaying[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 256-264. [30] 王婷婷, 章程, 张福增, 等. 氧含量对大气压等离子体薄膜沉积提高环氧树脂沿面耐压的影响[J]. 高电压技术, 2020, 46(10): 3708-3714. Wang Tingting, Zhang Cheng, Zhang Fuzeng, et al.Effect of oxygen concentration on improvement of surface pressure resistance of epoxy resin by atmospheric pressure plasma deposition[J]. High Voltage Engineering, 2020, 46(10): 3708-3714. [31] Shao Tao, Liu Feng, Hai Bin, et al.Surface modification of epoxy using an atmospheric pressure dielectric barrier discharge to accelerate surface charge dissipation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(3): 1557-1565. [32] Zhang Cheng, Ma Yiyang, Kong Fei, et al.Atmospheric pressure plasmas and direct fluorination treatment of Al2O3-filled epoxy resin: a comparison of surface charge dissipation[J]. Surface and Coatings Technology, 2019, 362: 1-11. [33] 马翊洋, 章程, 孔飞, 等. 等离子体射流阵列辅助薄膜沉积对环氧树脂表面电气特性的影响[J]. 高电压技术, 2018, 44(9): 3089-3096. Ma Yuyang, Zhang Cheng, Kong Fei, et al.Effect of plasma jet array assisted film deposition on epoxy resin surface electrical characteristics[J]. High Voltage Engineering, 2018, 44(9): 3089-3096. [34] 海彬, 章程, 王瑞雪, 等. 等离子体沉积类SiO2薄膜抑制环氧树脂表面电荷积聚[J]. 高电压技术, 2017, 43(2): 375-384. Hai Bin, Zhang Cheng, Wang Ruixue, et al.Plasma depositing SiO2-like film to suppress surface charge accumulation on epoxy resin[J]. High Voltage Engineering, 2017, 43(2): 375-384. [35] 何金良, 杨霄, 胡军. 非线性均压材料的设计理论与参数调控[J]. 电工技术学报, 2017, 32(16): 44-60. He Jinliang, Yang Xiao, Hu Jun.Progress of theory and parameter adjustment for nonlinear resistive field grading materials[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 44-60. [36] Li Jin, Liang H C, Du B X, et al.Surface functional graded spacer for compact HVDC gaseous insulated system[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(2): 664-667. [37] 李进, 王雨帆, 梁虎成, 等. 高压直流GIL盆式绝缘子非线性电导参数优化[J]. 中国电机工程学报, 2021, 41(1): 166-173, 407. Li Jin, Wang Yufan, Liang Hucheng, et al.Parameter optimization of nonlinear conductivity spacer for HVDC GIL[J]. Proceedings of the CSEE, 2021, 41(1): 166-173, 407. [38] 李进, 王泽华, 陈允, 等. 高压气体绝缘输电设备用功能梯度材料研究进展[J]. 高电压技术, 2020, 46(7): 2471-2477. Li Jin, Wang Zehua, Chen Yun, et al.Research progress on functionally graded materials for high voltage gas insulated transmission apparatus[J]. High Voltage Engineering, 2020, 46(7): 2471-2477. [39] Du B X, Ran Z Y, Li J, et al.Novel insulator with interfacial σ-FGM for DC compact gaseous insulated pipeline[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(3): 818-825. [40] Du B X, Wang Z H, Li J, et al.Epoxy insulator with surface graded-permittivity by magnetron sputtering for gas-insulated line[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(1): 175-182. [41] Zhang Zhousheng, Wang Zheming, Teyssedre G, et al.Gas-solid interface charge tailoring techniques: what we grasped and where to go[J]. Nanotechnology, 2020, 32(12): 122001. [42] 詹振宇, 阮浩鸥, 律方成, 等. 等离子体氟化改性环氧树脂及其在C4F7N/CO2混合气体中电气性能研究[J]. 电工技术学报, 2020, 35(8): 1787-1798. Zhan Zhenyu, Ruan Haoou, Lü Fangcheng, et al.Plasma fluorinated epoxy resin and its insulation properties in C4F7N/CO2 mixed gas[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1787-1798. [43] Straumann U, Schueller M, Franck C M.Theoretical investigation of HVDC disc spacer charging in SF6 gas insulated systems[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(6): 2196-2205. [44] Zhang Cheng, Lin Haofan, Zhang Shuai, et al.Plasma surface treatment to improve surface charge accumulation and dissipation of epoxy resin exposed to DC and nanosecond-pulse voltages[J]. Journal of Physics D: Applied Physics, 2017, 50(40): 405203. [45] Yan Jiyuan, Liang Guishu, Lian Hongliang, et al.Effect of plasma step gradient modification on surface electrical properties of epoxy resin[J]. Plasma Science and Technology, 2021, 23(6): 064012. |
|
|
|