|
|
Dynamic Event-Triggered Model Predictive Control for Vienna Rectifier |
Zhou Yunhong1, Zhang Aimin1, Huang Jingjing1, Du Yudong1, Zhang Lei2 |
1. School of Automation Science and Engineering Xi'an Jiaotong University Xi'an 710049 China; 2. School of Electronic Information Xi'an Polytechnic University Xi'an 710049 China |
|
|
Abstract A dynamic event-triggered model predictive control (DET-MPC) strategy is proposed for the Vienna rectifier in the DC charging system. In the proposed method, the MPC scheme is carried out only when the event-triggered condition of the system is met. Otherwise, the switch state signal is held to reduce the calculation burden. Meanwhile, a dynamic function is introduced into the event-triggered condition to guarantee the steady-state performance of the system. Compared with the conventional finite control set model predictive control, the DET-MPC has advantages of less computational burden and less switching losses, while ensuring satisfactory regulation performance. The experimental results in the three-phase Vienna rectifier from the comparison with FCS-MPC demonstrate the effectiveness of the proposed DET-MPC method.
|
Received: 28 March 2021
|
|
|
|
|
[1] Ding Wenlong, Zhang Chenghui, Gao Feng, et al.A zero-sequence component injection modulation with compensation for current harmonic mitigation of Vienna rectifier[J]. IEEE Transactions on Power Electronics, 2019, 34(1): 801-814. [2] 李春杰, 黄文新, 卜飞飞, 等. 电动汽车充电与驱动集成化拓扑[J]. 电工技术学报, 2017, 32(12): 138-145. Li Chunjie, Huang Wenxin, Bu Feifei, et al.The integrated topology of charging and drive for electric vehicles[J]. Transactions of China Electrotechnical Society, 2017, 32(12): 138-145. [3] Zhu Wenjie, Chen Changsong, Duan Shanxu, et al.Carrier-based discontinuous PWM method with varying clamped area for Vienna rectifier[J]. IEEE Transactions on Industrial Electronics, 2019, 66(9): 7177-7188. [4] 常伟, 王久和, 陈启丽. 基于NSGA-Ⅱ算法Vienna整流器多目标优化[J]. 中国电机工程学报, 2016, 36(增刊1): 179-185. Chang Wei, Wang Jiuhe, Chen Qili.Multi-objective optimization of Vienna rectifier based on NSGA-Ⅱ algorithm[J]. Proceedings of the CSEE, 2016, 36(S1): 179-185. [5] 邹宇航, 张犁, 赵瑞, 等. 三相Vienna整流器的不连续空间矢量脉宽调制及电压谐波分析方法[J]. 中国电机工程学报, 2020, 40(24): 8123-8130. Zou Yuhang, Zhang Li, Zhao Rui, et al.Dis- continuous pulse width modulation and voltage harmonic analysis method for three-phase Vienna- type rectifiers[J]. Proceedings of the CSEE, 2020, 40(24): 8123-8130. [6] Khaligh A, Dusmez S.Comprehensive topological analysis of conductive and inductive charging solutions for plug-in electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2012, 61(8): 3475-3489. [7] 朱文杰, 陈昌松, 段善旭. 一种基于离散空间矢量调制的Vienna整流器模型预测控制方法[J]. 中国电机工程学报, 2019, 39(20): 6008-6016. Zhu Wenjie, Chen Changsong, Duan Shanxu.A model predictive control method with discrete space vector modulation of Vienna rectifier[J]. Proceedings of the CSEE, 2019, 39(20): 6008-6016. [8] 年珩, 叶余桦. 三端口隔离双向DC-DC变换器模型预测控制技术[J]. 电工技术学报, 2020, 35(16): 3478-3488. Nian Heng, Ye Yuhua.Model predictive control of three-port isolated bidirectional DC-DC converter[J]. Transactions of China Electrotechnical Society, 2020, 35(16): 3478-3488. [9] 党超亮, 同向前, 黄晶晶, 等. 基于降阶模型的三相Vienna整流器交流级联稳定性分析[J]. 电力自动化设备, 2018, 38(10): 133-139. Dang Chaoliang, Tong Xiangqian, Huang Jingjing, et al.Stability analysis of three-phase Vienna rectifier AC cascade system based on reduced order model[J]. Electric Power Automation Equipment, 2018, 38(10): 133-139. [10] 柳志飞, 杜贵平, 杜发达. 有限集模型预测控制在电力电子系统中的研究现状和发展趋势[J]. 电工技术学报, 2017, 32(22): 58-69. Liu Zhifei, Du Guiping, Du Fada.Research status and development trend of finite control set model predictive control in power electronics[J]. Transa- ctions of China Electrotechnical Society, 2017, 32(22): 58-69. [11] Rodriguez J, Kazmierkowski M P, Espinoza J R, et al.State of the art of finite control set model predictive control in power electronics[J]. IEEE Transactions on Industrial Informatics, 2013, 9(2): 1003-1016. [12] 王祯, 尹项根, 陈玉, 等. 基于连续控制集模型预测控制的MMC桥臂电流控制策略[J]. 电力系统自动化, 2020, 44(10): 85-91. Wang Zhen, Yin Xianggen, Chen Yu, et al.Arm current control strategy of modular multilevel converter based on continuous control set model predictive control[J]. Automation of Electric Power Systems, 2020, 44(10): 85-91. [13] Kouro S, Cortes P, Vargas R, et al.Model predictive control-a simple and powerful method to control power converters[J]. IEEE Transactions on Industrial Electronics, 2009, 56(6): 1826-1838. [14] 杨兴武, 徐依明, 杨帆, 等. 模块化多电平换流器有限状态分层模型预测控制方法[J]. 电力系统自动化, 2020, 44(15): 148-155. Yang Xingwu, Xu Yiming, Yang Fan, et al.Hierarchical model predictive control method based on finite state for modular multilevel converter[J]. Automation of Electric Power Systems, 2020, 44(15): 148-155. [15] Liu Xing, Qiu Lin, Fang Youtong, et al.Finite- level-state model predictive control for sensorless three-phase four-arm modular multilevel converter[J]. IEEE Transactions on Power Electronics, 2020, 35(5): 4462-4466. [16] Huang Jingjing, Yang Bo, Guo Fanghong, et al.Priority sorting approach for modular multilevel converter based on simplified model predictive control[J]. IEEE Transaction on Industrial Electronics, 2018, 65(6): 4819-4830. [17] 邹甲, 王聪, 程红, 等. 三相线电压级联VIENNA变换器调制及直流侧电压控制[J]. 电工技术学报, 2018, 33(16): 3835-3844. Zou Jia, Wang Cong, Cheng Hong, et al.Research on modulation strategy and balance control for DC-Link voltages in triple line-voltage vascaded VIENNA converter[J]. Transactions of China Electrotechnical Society, 2018, 33(16): 3835-3844. [18] 朱文杰, 陈昌松, 段善旭. 一种改善Vienna整流器输入电流品质的载波钳位调制方法[J]. 电工技术学报, 2019, 34(8): 1677-1688. Zhu Wenjie, Chen Changsong, Duan Shanxu.A carrier-based modulation method with clamped area for input current performance of Vienna rectifier[J]. Transactions of China Electrotechnical Society, 2019, 34(8): 1677-1688. [19] 张永昌, 杨海涛, 魏香龙. 基于快速矢量选择的永磁同步电机模型预测控制[J]. 电工技术学报, 2016, 31(6): 66-73. Zhang Yongchang, Yang Haitao, Wei Xianglong.Model predictive control of permanent magnet synchronous motors based on fast vector selection[J]. Transactions of China Electrotechnical Society, 2016, 31(6): 66-73. [20] Duran M J, Prieto J, Barrero F, et al.Predictive current control of dual three-phase drives using restrained search techniques[J]. IEEE Transactions on Industrial Electronics, 2011, 58(8): 3253-3263. [21] Li Xing, Sun Yao, Wang Hui, et al.A hybrid control scheme for three-phase Vienna rectifiers[J]. IEEE Transactions on Power Electronics, 2018, 33(1): 629-640. [22] Lee J S, Lee K B.Predictive control of Vienna rectifiers for PMSG systems[J]. IEEE Transactions on Industrial Electronics, 2017, 64(4): 2580-2591. [23] Tabuada P.Event-triggered real-time scheduling of stabilizing control tasks[J]. IEEE Transactions on Automatic Control, 2007, 52(9): 1680-1685. [24] 郭伟, 赵洪山. 基于事件触发机制的直流微电网多混合储能系统分层协调控制方法[J]. 电工技术学报, 2020, 35(5): 1140-1151. Guo Wei, Zhao Hongshan.Coordinated control method of multiple hybrid energy storage system in DC microgrid based on event-triggered mechanism[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 1140-1151. [25] Wang Benfei, Huang Jingjing, Wen Changyun, et al.Event-triggered model predictive control for power converters[J]. IEEE Transactions on Industrial Elec- tronic, 2021, 68(1): 715-720. [26] Gao Yongfeng, Wang Rui, Wen Changyun, et al.Digital event-based control for nonlinear systems without the limit of ISS[J]. IEEE Transactions on Circuits and Systems: Express Briefs, 2017, 64(7): 807-811. [27] Ge Xiaohua, Han Qinglong, Wang Zidong.A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor net- works[J]. IEEE Transactions on Cybernetics, 2019, 49(1): 171-183. [28] Romain P, Paulo T, Dragan N, et al.A framework for the event-triggered stabilization of nonlinear systems[J]. IEEE Transactions on Automatic Control, 2015, 60(4): 982-996. [29] Li Qi, Shen Bo, Wang Zidong, et al.Synchronization control for a class of discrete time-delay complex dynamical networks: a dynamic event-triggered approach[J]. IEEE Transactions on Cybernetics, 2019, 49(5): 1979-1986. [30] Antoine G.Dynamic triggering mechanisms for event-triggered control[J]. IEEE Transactions on Automatic Control, 2015, 60(7): 1992-1997. |
|
|
|