|
|
Rapid Optimization for Emergent Frequency Control Strategy with the Power Regulation of Renewable Energy during the Loss of DC Connection |
Ke Deping1, Feng Shuaishuai1, Liu Fusuo2, Chang Haijun2, Sun Yuanzhang1 |
1. School of Electrical and Automation Wuhan University Wuhan 430072 China; 2. Nari Group Corporation State Grid Electric Power Research Institute Nanjing 211006 China |
|
|
Abstract In a power system which has highly penetrated renewable energy generators and high-voltage dc lines transmitting power to other systems, fast and continuous adjustment of the large renewable energy bases’ power outputs should be an economic replacement of the expensive countermeasure of tripping conventional generating units, for the emergent frequency control when the fault-caused loss of dc connection suddenly occurs. Therefore, an optimization model for the emergent frequency control strategy to ensure the frequency safety of the dc sending-end power system and lowest control cost, is proposed in this paper based on cooperating the renewable energy plants and conventional generators. Generally, it is very difficult to solve this optimization because it is nonlinear and with differential equation constraints. Thus, a systematic method which can convert the model to a mixed integer linear programming (MILP) problem is proposed so that it can be efficiently solved by dedicated powerful commercial software. The simulation results based on the model of a province-sized power system in North-west China prove the effectiveness of the proposed optimization model and the efficiency of the solving process.
|
Received: 03 March 2021
|
|
|
|
|
[1] 张炎, 丁明, 韩平平, 等. 直流闭锁后风电送端系统暂态稳定及控制策略研究[J]. 电工技术学报, 2020, 35(17): 3714-3726. Zhang Yan, Ding Ming, Han Pingping, et al.Study on the transient stability and control schemes of the sending-end system involving wind power after UHVDC block[J]. Transactions of China Electrote-chnical Society, 2020, 35(17): 3714-3726. [2] 谢宇峥, 张恒旭, 李常刚, 等. 考虑风电机组频率保护的送端电网有序高频切机策略[J]. 电力系统自动化, 2021, 45(9): 153-161. Xie Yuzheng, Zhang Hengxu, Li Changgang, et al.Ordered strategy of generators tripping for high frequency considering wind turbine frequency protec-tion[J]. Automation of Electric Power Systems, 2021, 45(9): 153-161. [3] 李兴源, 赵睿, 刘天琪, 等. 传统高压直流输电系统稳定性分析和控制综述[J]. 电工技术学报, 2013, 28(10): 288-300. Li Xingyuan, Zhao Rui, Liu Tianqi, et al.Research of conventional high voltage direct current transmission system stability analysis and control[J]. Transactions of China Electrotechnical Society, 2013, 28(10): 288-300. [4] 张志强, 袁荣湘, 徐友平, 等. 适应多回特高压直流的四川电网高频切机优化[J]. 电力系统自动化, 2016, 40(2): 141-146. Zhang Zhiqiang, Yuan Rongxiang, Xu Youping, et al.Optimization of high frequency generator tripping strategy for multi-circuit UHVDC in Sichuan power grid[J]. Automation of Electric Power Systems, 2016, 40(2): 141-146. [5] 钟显, 樊艳芳, 王一波, 等. 含高密度风电、交直流送端电网直流闭锁故障稳控方案研究[J]. 电力系统保护与控制, 2015, 43(13): 130-138. Zhong Xian, Fan Yanfang, Wang Yibo, et al.Research of stability control strategies for high density wind power, AC-DC sending grid bi-pole trip[J]. Power System Protection and Control, 2015, 43(13): 130-138. [6] 骆悦, 姚骏, 张田, 等. 大规模风电直流外送系统单极闭锁场景下送端系统协调控制策略[J]. 电工技术学报, 2019, 34(19): 4108-4118. Luo Yue, Yao Jun, Zhang Tian, et al.Coordinated control strategy of large-scale wind power generation sending system under mono-polar block fault[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 4108-4118. [7] 赵渊, 吴小平, 谢开贵. 基于频率动态特性的电力系统频率失稳概率评估[J]. 电工技术学报, 2012, 27(5): 212-220. Zhao Yuan, Wu Xiaoping, Xie Kaigui.Frequency instability probabilistic assessment for frequency inst- ability of power system based on frequency dynamic characteristic[J]. Transactions of China Electrotech- nical Society, 2012, 27(5): 212-220 [8] 颜自坚, 刘俊, 周海强, 等. 计及锅炉动态的直流受端系统中长期频率响应计算方法[J]. 电力系统保护与控制, 2020, 48(5): 65-71. Yan Zijian, Liu Jun, Zhou Haiqiang, et al.Mid-term and long-term frequency calculation method for the HVDC receiving-end system considering the boiler dynamics[J]. Power System Protection and Control, 2020, 48(5): 65-71. [9] Liu Yutian, Fan Rui, Terzija V.Power system restoration: a literature review from 2006 to 2016[J]. Journal of Modern Power Systems and Clean Energy, 2016, 4(3): 332-341. [10] 刘威, 张东霞, 王新迎, 等. 基于深度强化学习的电网紧急控制策略研究[J]. 中国电机工程学报, 2018, 38(1): 109-119, 347. Liu Wei, Zhang Dongxia, Wang Xinying, et al.A decision making strategy for generating unit tripping under emergency circumstances based on deep reinfor-cement learning[J]. Proceedings of the Chinese Society of Electrical Engineering, 2018, 38(1): 109-119, 347. [11] Zhu Shaoxuan, Wang Tong, Wang Zengping.Bi-level optimized emergency load/generator shedding strategy for AC/DC hybrid system following DC blocking[J]. IET Generation, Transmission & Distribution, 2020, 14(8): 1491-1499. [12] Zhang Xing, Jiang Han, Yu Zhihong, et al.A generator tripping control method based on trajectory sensitivity analysis and pattern search[C]//34th Chinese Control Conference (CCC), Hangzhou, 2015: 9043-9047. [13] Lappalainen K, Valkealahti S.Output power variation of different PV array configurations during irradiance transitions caused by moving clouds[J]. Applied Energy, 2017, 190: 902-910. [14] Omran W A, Kazerani M, Salama M M A. Investiga- tion of methods for reduction of power fluctuations generated from large grid-connected photovoltaic systems[J], IEEE Transactions on Energy Conversion, 2011, 26(1): 318-327. [15] 杨濛濛, 郭雷, 王春华, 等. 基于改进支路暂态能量函数的风电并网暂态最优切机控制[J]. 电力系统保护与控制, 2014, 42(18): 72-77. Yang Mengmeng, Guo Lei, Wang Chunhua, et al.Optimal transient tripping control of grid-connected wind power based on improved branch transient energy function[J]. Power System Protection and Control, 2014, 42(18): 72-77. [16] Gautam D, Vittal V, Harbour T.Impact of increased penetration of DFIG-based wind turbine generators on transient and small signal stability of power systems[J]. IEEE Transactions on Power Systems, 2009, 24(3): 1426-1434. [17] 丁剑, 邱跃丰, 孙华东, 等. 大规模风电接入下风电机组切机措施研究(英文)[J]. 中国电机工程学报, 2011, 31(19): 25-36. Ding Jian, Qiu Yuefeng, Sun Huadong, et al.Conside- ration of wind generator tripping under large-scale wind power integration (English)[J]. Proceedings of the CSEE, 2011, 31(19): 25-36. [18] 周野, 刘福锁, 常海军, 等. 用于频率紧急控制的水电群精准控制策略[J]. 电力系统自动化, 2020, 44(11): 121-126. Zhou Ye, Liu Fusuo, Chang Haijun, et al.Accurate control strategy of hydropower group for frequency emergency control[J]. Automation of Electric Power Systems, 2020, 44(11): 121-126. [19] 王淑超, 孙光辉, 俞诚生, 等. 光伏发电系统级快速功率调控技术及其应用[J]. 中国电机工程学报, 2018, 38(21): 6254-6263, 6487. Wang Shuchao, Sun Guanghui, Yu Chengsheng, et al.Photovoltaic power generation system level rapid power control technology and its application[J]. Proceedings of the CSEE, 2018, 38(21): 6254-6263, 6487. [20] 章艳, 高晗, 张萌. 不同虚拟同步机控制下双馈风机系统频率响应差异研究[J]. 电工技术学报, 2020, 35(13): 2889-2900. Zhang Yan, Gao Han, Zhang Meng.Research on difference of frequency research on frequency response difference of doubly-fed induction generator system controlled by different virtual synchronous generator controls[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2889-2900. [21] 丁磊, 尹善耀, 王同晓, 等. 结合超速备用和模拟惯性的双馈风机频率控制策略[J]. 电网技术, 2015, 39(9): 2385-2391. Ding Lei, Yin Shanyao, Wang Tongxiao, et al.Integrated frequency control strategy of DFIGs based on virtual inertia and over-speed control[J]. Power System Technology, 2015, 39(9): 2385-2391. [22] 周志超, 王成山, 郭力, 等. 变速变桨距风电机组的全风速限功率优化控制[J]. 中国电机工程学报, 2015, 35(8): 1837-1844. Zhou Zhichao, Wang Chengshan, Guo Li, et al.Output power curtailment control of variable-speed variable- pitch wind turbine generator at all wind speed regions[J]. Proceedings of the CSEE, 2015, 35(8): 1837-1844. [23] 孙铭, 徐飞, 陈磊, 等. 利用转子动能的风机辅助频率控制最优策略[J]. 中国电机工程学报, 2021, 41(2): 506-514. Sun Ming, Xu Fei, Chen Lei, et al.Optimal auxiliary frequency control strategy of wind turbine generator utilizing rotor kinetic energy[J]. Proceedings of the CSEE, 2021, 41(2): 506-514. [24] 刘彬彬, 杨健维, 廖凯, 等. 基于转子动能控制的双馈风电机组频率控制改进方案[J]. 电力系统自动化, 2016, 40(16): 17-22. Liu Binbin, Yang Jianwei, Liao Kai, et al.An improved frequency control strategy for DFIG based on rotor kinetic energy control[J]. Automation of Electric Power Systems, 2016, 40(16): 17-22. [25] 陆崎, 任祖怡, 徐柯, 等. 基于隐枚举法的稳定控制优化切机方法[J]. 电力系统自动化, 2016, 40(5): 139-144. Lu Qi, Ren Zuyi, Xu Ke, et al.An optimization method for generator tripping in stability control based on implicit enumeration method[J]. Automation of Electric Power Systems, 2016, 40(5): 139-144. [26] 颜湘武, 崔森, 常文斐. 考虑储能自适应调节的双馈感应发电机一次调频控制策略[J]. 电工技术学报, 2021, 36(5): 1027-1039. Yan Xiangwu, Cui Sen, Chang Wenfei.Primary frequency regulation control strategy of doubly-fed induction generator considering supercarpacitor SOC feedback adaptive adjustment[J]. Transactions of China Electrotechnical Society, 2021, 36(5): 1027-1039. [27] 颜湘武, 宋子君, 崔森, 等. 基于变功率点跟踪和超级电容器储能协调控制的双馈风电机组一次调频策略[J]. 电工技术学报, 2020, 35(3): 530-541. Yan Xiangwu, Song Zijun, Cui Sen, et al.Primary frequency regulation strategy of doubly-fed wind turbine based on variable power point tracking and supercapacitor energy storage[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 530-541. [28] Anderson P M, Mirheydar M.A low-order system frequency response model[J]. IEEE Transactions on Power Systems, 1990, 5(3): 720-729. [29] Carrion M, Arroyo J M.A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem[J]. IEEE Transactions on Power Systems, 2006, 21(3): 1371-1378. [30] GB/T 31464—2015 电网运行准则[S]. 2015. [31] 包宇庆. 需求响应参与电力系统调频机理及控制研究[D]. 南京: 东南大学, 2015. |
|
|
|