|
|
Multi-Level Multi-Objective Optimization Algorithm for Linear Induction Motor Applied to Urban Transit Considering Converter Hamonics |
Xu Wei1, Xiao Xinyu1, Dong Dinghao1, Tang Yirong1, Shangguang Yongdao1, Huang Shoudao2, Gao Jian2 |
1. State Key Laboratory of Advanced Electromagnetic Engineering and Technology Huazhong University of Science and Technology Wuhan 430074 China; 2. College of Electrical and Information Engineering Hunan University Changsha 410082 China |
|
|
Abstract Due to the inherent large air gap, end effect and inverter harmonics,the linear induction motor (LIM) applied in rail transit has great difficulty to obtain high efficiency and power factor. In order to overcome related problems, a multi-level and multi-objective optimization method considering the influence of inverter harmonics is proposed in this paper. First of all, based on the traditional fundamental equivalent circuit, the harmonic analysis model of the LIM considering the influence of converter is established, and the analytical expression of the optimization objective is obtained. Then, through the sensitivity analysis of the motor parameters, seven main parameters are identified and used as subsequent optimization variables for the LIM drive. Furthermore, in order to reduce the optimization time and improve the optimization effect, the primary and secondary variables that affect the motor performance are found through Pearson coefficient correlation analysis and variance analysis, so that the single-level optimization problem is transformed into a multi-level optimization problem. Comprehensive simulation and experimental results have shown that the LIM based on the proposed optimization method in this paper can improve the efficiency and power factor by about 5.0% and 12.7%, respectively.
|
Received: 05 September 2021
|
|
|
|
|
[1] 龙遐令. 直线感应电动机的理论和电磁设计方法[M]. 北京: 科学出版社, 2006. [2] Boldea I.Linear electric machines, drives, and MAGLEVs handbook[M]. Boca Raton: CRC Press, 2013. [3] Xu Wei, Islam R, Pucci M.Advanced linear machines and drive systems[M]. Berlin: Springer Verlag, 2019. [4] Xu Wei, Zhu Jianguo, Zhang Yongchang, et al.Equivalent circuits for single-sided linear induction motors[J]. IEEE Transactions on Industry Applications, 2010, 46(6): 2410-2423. [5] Boldea I, Xu Wei, Pucci M.Linear electric machines, drives and MAGLEVs: an overview[J]. IEEE Transa-ctions on Industrial Electronics, 2018, 65(9): 7504-7515. [6] 徐伟, 肖新宇, 董定昊, 等. 直线感应电机效率优化控制技术综述[J]. 电工技术学报, 2021, 36(5): 902-915, 934. Xu Wei, Xiao Xinyu, Dong Dinghao, et al.Review on efficiency optimization control strategies of linear induction machines[J]. Transactions of China Electrotechnical Society, 2021, 36(5): 902-915, 934. [7] Isfahani A, Ebrahimi B, Lesani H.Design optimization of a low-speed single-sided linear induction motor for improved efficiency and power factor[J]. IEEE Transactions on Magnetics, 2008, 44(2): 266-272. [8] Shiri A, Shoulaie A.Design optimization and analysis of single-sided linear induction motor, considering all phenomena[J]. IEEE Transactions on Energy Conversion, 2012, 27(2): 516-525. [9] Ravanji M, Nasiri-Gheidari Z.Design optimization of a ladder secondary single-sided linear induction motor for improved performance[J]. IEEE Transactions on Energy Conversion, 2015, 30(4): 1595-1603. [10] Lu Qinfen, Li Longxiang, Zhan Jiawen, et al.Design optimization and performance investigation of novel linear induction motors with two kinds of secondaries[J]. IEEE Transactions on Industry Applications, 2019, 55(6): 5830-5842. [11] 罗俊, 寇宝泉, 杨小宝. 双交替极横向磁通直线电机的优化与设计[J]. 电工技术学报, 2020, 35(5): 991-1000. Luo Jun, Kou Baoquan, Yang Xiaobao.Optimization and design of dual-consequent-pole transverse flux linear machine[J]. Transactions of China Electrote-chnical Society, 2020, 35(5): 991-1000. [12] Ullah W, Khan F, Umair M.Multi-objective optimization of high torque density segmented PM consequent pole flux switching machine with flux bridge[J]. CES Transactions on Electrical Machines and Systems, 2021, 5(1): 30-40. [13] Xu Wei, Hu Dong, Lei Gang, et al.System-level efficiency optimization of a linear induction motor drive system[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(3): 285-291. [14] Xu Wei, Xiao Xinyu, Du Guanghui, et al.Comprehensive efficiency optimization of linear induction motors for urban transit[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 131-139. [15] Lee B, Kim K, Hong J, et al.Optimum shape design of single-sided linear induction motors using response surface methodology and finite-element method[J]. IEEE Transactions on Magnetics, 2011, 47(10): 3657-3660. [16] Zhang Shuangshuang, Zhang Wei, Wang Rui, et al.Optimization design of halbach permanent magnet motor based on multi-objective sensitivity[J]. CES Transactions on Electrical Machines and Systems, 2020, 4(1): 20-26. [17] 李祥林, 李金阳, 杨光勇, 等. 电励磁双定子场调制电机的多目标优化设计分析[J]. 电工技术学报, 2020, 35(5): 972-982. Li Xianglin, Li Jinyang, Yang Guangyong, et al.Multi-objective optimization analysis of electric-excitation double-stator field-modulated machine[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 972-982. [18] 李雄松, 崔鹤松, 胡纯福, 等. 平板型永磁直线同步电机推力特性的优化设计[J]. 电工技术学报, 2021, 36(5): 916-923. Li Xiongsong, Cui Hesong, Hu Chunfu, et al.Optimal design of thrust characteristics of flat-type permanent magnet linear synchronous motor[J]. Transactions of China Electrotechnical Society, 2021, 36(5): 916-923. [19] 赵玫, 于帅, 邹海林, 等. 聚磁式横向磁通永磁直线电机的多目标优化[J]. 电工技术学报, 2021, 36(17): 3730-3740. Zhao Mei, Yu Shuai, Zou Hailin, et al.Multi-objective optimization of transverse flux permanent magnet linear machine with the concentrated flux mover[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3730-3740. [20] 孔令星, 肖嵩, 郭小舟. 基于Kriging代理模型的直线感应电机多目标优化设计[J]. 微电机, 2018, 51(7): 12-15. Kong Lingxing, Xiao Song, Guo Xiaozhou.Multiobjective optimum design of linear induction motor using kriging surrogate model[J]. Micromotors, 2018, 51(7): 12-15. [21] 宫金林, 王秀和. 基于多目标有效全局优化算法的直线感应电动机优化设计[J]. 电工技术学报, 2015, 30(24): 32-37. Gong Jinglin, Wang Xiuhe.Optimal design of a linear induction motor using multi-objective efficient global optimization[J]. Transactions of China Electrotechnical Society, 2015, 30(24): 32-37. [22] 刘国海, 王艳阳, 陈前. 非对称V型内置式永磁同步电机的多目标优化设计[J]. 电工技术学报, 2018, 33(增刊2): 385-393. Liu Guohai, Wang Yanyang, Chen Qian.Multi-objective optimization of an asymmetric V-shaped interior permanent magnet synchronous motor[J]. Transactions of the China Electrotechnical Society, 2018, 33(S2): 385-393. [23] Zhu Xiaoyong, Xiang Zixuan, Quan Li, et al.Multimode optimization design methodology for a flux-controllable stator permanent magnet memory motor considering driving cycles[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5353-5366. [24] Sun Xiaodong, Shi Zhou, Lei Gang, et al.Multi-objective design optimization of an IPMSM based on multilevel strategy[J]. IEEE Transactions on Industrial Electronics, 2021, 68(1): 139-148. [25] Gieras J.Linear induction drives[M]. Oxford: Clarendon Press, 1994. [26] Deb K, Pratap A, Agarwal S, et al.A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. |
|
|
|