|
|
Distributed Automatic Generation Control of Wind Farm Considering Load Suppression |
Yao Qi1, Hu Yang2, Liu Yu3, Luo Zhiling2, Qi Xiao1 |
1. Energy and Electricity Research Center Jinan University Zhuhai 519070 China; 2. School of Control and Computer Engineering North China Electric Power University Beijing 102206 China; 3. North Electric Power Dispatch and Control Sub-Center State Grid Corporation of China Beijing 100053 China |
|
|
Abstract To optimize the fatigue load of wind turbines during automatic generation control (AGC) process, a novel wind turbine control model was proposed and applies it to the wind farm. A multi-input and multi-output (MIMO) wind turbine control model was established, so that the wind turbine can control the rotor speed and pitch angle simultaneously. Then, a wind farm control system based on a distributed framework was designed to make wind turbines coordinate with each other to directly optimize the rotor speed and pitch angle of all turbines with the goal of load suppression. The simulation results show that the proposed control model can achieve more flexible and effective control of wind turbines. Combined with the distributed control framework, the fatigue load of wind turbines can be significantly reduced under the premise of completing AGC instructions.
|
Received: 07 December 2020
|
|
|
|
|
[1] 穆钢, 蔡婷婷, 严干贵, 等. 双馈风电机组参与持续调频的双向功率约束及其影响[J]. 电工技术学报, 2019, 34(8): 1750-1759. Mu Gang, Cai Tingting, Yan Gangui, et al.Bidirectional power constraints and influence of doubly fed induction generator participating in continuous frequency regulation[J]. Transaction of China Electrotechnical Society, 2019, 34(8): 1750-1759. [2] Guo Xiaoqiang, Chen Weijian.Control of multiple power inverters for more electronics power systems: a review[J]. CES Transactions on Electrical Machines and Systems, 2018, 2(3): 255-263. [3] 王涛, 诸自强, 年珩. 非理想电网下双馈风力发电系统运行技术综述[J]. 电工技术学报, 2020, 35(3): 455-471. Wang Tao, Zhu Ziqiang, Nian Hang.Review of operation technology of doubly-fed induction generator-based wind power system under nonideal grid conditions[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 579-587.2020, 35(3): 455-471. [4] 麻秀范, 王戈, 朱思嘉, 等. 计及风电消纳与发电集团利益的日前协调优化调度[J]. 电工技术学报, 2021, 36(3): 579-587. Ma Xiufan, Wang Ge, Zhu Sijia, et al.Coordinated day-ahead optimal dispatch considering wind power consumption and the benefits of power generation group[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 579-587. [5] 杨正清, 汪震, 展肖娜, 等. 考虑风电有功主动控制的两阶段系统备用双层优化模型[J]. 电力系统自动化, 2016, 40(10): 31-37. Yang Zhengqing, Wang Zhen, Zhan Xiaona, et al.Bi-level optimization model of two-stage reserve scheduling with proactive wind power control[J]. Automation of Electric Power Systems, 2016, 40(10): 31-37. [6] Guo Yifei, Gao Houlei, Wu Qiuwei, et al.Distributed coordinated active and reactive power control of wind farms based on model predictive control[J]. International Journal of Electrical Power & Energy Systems, 2019, 104: 78-88. [7] Hu Jianqiang, Chen M Z Q, Cao Jinde, et al. Coordinated active power dispatch for a microgrid via distributed lambda iteration[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2017, 7(2): 250-261. [8] 苏永新, 段斌, 朱广辉, 等. 海上风电场疲劳分布与有功功率统一控制[J]. 电工技术学报, 2015, 30(22): 190-198. Su Yongxin, Duan Bin, Zhu Guanghui, et al.Fatigue distribution and active power combined control in offshore wind farm[J]. Transaction of China Electrotechnical Society, 2015, 30(22): 190-198. [9] Riverso S, Mancini S, Sarzo F, et al.Model predictive controllers for reduction of mechanical fatigue in wind farms[J]. IEEE Transactions on Control Systems Technology, 2017, 25(2): 535-549. [10] Zhao Haoran, Wu Qiuwei, Huang Shaojun, et al.Fatigue load sensitivity-based optimal active power dispatch for wind farms[J]. IEEE Transactions on Sustainable Energy, 2017, 8(3): 1247-1259. [11] Knudsen T, Bak T, Svenstrup M.Survey of wind farm control-power and fatigue optimization[J]. Wind Energy, 2015, 18(8): 1333-1351. [12] Zhang Baohua, Soltani M, Hu Weihao, et al.Optimized power dispatch in wind farms for power maximizing considering fatigue loads[J]. IEEE Transactions on Sustainable Energy, 2018, 9(2): 862-871. [13] 刘吉臻, 孟洪民, 胡阳. 采用梯度估计的风力发电系统最优转矩最大功率点追踪效率优化[J]. 中国电机工程学报, 2015, 35(10): 2367-2374. Liu Jizhen, Meng Hongmin, Hu Yang.Efficiency optimization of optimum torque maximum power point tracking based on gradient approximation for wind turbine generator system[J]. Proceedings of the CSEE, 2015, 35(10): 2367-2374. [14] 姚琦, 刘吉臻, 胡阳, 等. 含异步变速风机的风电场一次调频等值建模与仿真[J]. 电力系统自动化, 2019, 43(23): 185-192. Yao Qi, Liu Jizhen, Hu Yang, et al.Equivalent modeling and simulation for primary frequency regulation of wind farm with asynchronous variable-speed wind turbines[J]. Automation of Electric Power Systems, 2019, 43(23): 185-192. [15] Wang Shu, Seiler P.LPV Active power control and robust analysis for wind turbines[C]//33rd Wind Energy Symposium, Kissimmee, Florida: American Institute of Aeronautics and Astronautics, 2015. [16] 刘军, 张彬彬, 赵婷. 基于模糊评价的风电场有功功率分配算法[J]. 电工技术学报, 2019, 34(4): 786-794. Liu Jun, Zhang Binbin, Zhao Ting.Research on wind farm active power dispatching algorithm based on fuzzy evaluation[J]. Transaction of China Electrotechnical Society, 2019, 34(4): 786-794. [17] Zhao Haoran, Wu Qiuwei, Guo Qinglai, et al.Distributed model predictive control of a wind farm for optimal active power control part I: clustering-based wind turbine model linearization[J]. IEEE Transactions on Sustainable Energy, 2015, 6(3): 831-839. [18] Luo Haocheng, Hu Zechun, Zhang Hongcai, et al.Coordinated active power control strategy for deloaded wind turbines to improve regulation performance in AGC[J]. IEEE Transactions on Power Systems, 2019, 34(1): 98-108. [19] Tang Xuesong, Yin Minghui, Shen Chun, et al.Active power control of wind turbine generators via coordinated rotor speed and pitch angle regulation[J]. IEEE Transactions on Sustainable Energy, 2019, 10(2): 822-832. [20] Hoek D van der, Kanev S, Engels W. Comparison of down-regulation strategies for wind farm control and their effects on fatigue loads[C]//2018 Annual American Control Conference (ACC), 2018: 3116-3121. [21] Spudic V.Coordinated optimal control of wind farm active power[D]. Croatia: University of Zagreb, 2012. [22] Jin Jingliang, Zhou Dequn, Zhou Peng, et al.Dispatching strategies for coordinating environmental awareness and risk perception in wind power integrated system[J]. Energy, 2016, 106: 453-463. [23] Zhang Jinhua, Liu Yongqian, Infield D, et al.Optimal power dispatch within wind farm based on two approaches to wind turbine classification[J]. Renewable Energy, 2017, 102: 487-501. [24] Wang Lei, Wen Jie, Cai Ming, et al.Distributed Optimization control schemes applied on offshore wind farm active power regulation[J]. Energy Procedia, 2017, 105: 1192-1198. [25] Yao Qi, Hu Yang, Chen Zhe, et al.Active power dispatch strategy of the wind farm based on improved multi-agent consistency algorithm[J]. IET Renewable Power Generation, 2019, 13(14): 2693-2704. [26] Zhao Haoran, Wu Qiuwei, Guo Qinglai, et al.Distributed model predictive control of a wind farm for optimal active power control part II: implementation with clustering-based piece-wise affine wind turbine model[J]. IEEE Transactions on Sustainable Energy, 2015, 6(3): 840-849. [27] 李世春, 黄悦华, 王凌云, 等. 基于转速控制的双馈风电机组一次调频辅助控制系统建模[J]. 中国电机工程学报, 2017, 37(24): 7077-7086, 7422. Li Shichun, Huang Yuehua, Wang Lingyun, et al.Modeling primary frequency regulation auxiliary control system of doubly fed induction generator based on rotor speed control[J]. Proceedings of the CSEE, 2017, 37(24): 7077-7086, 7422. [28] Aalborg University. SimWindFarm Toolbox[EB/OL]. /2020-03-07. http://www.ict-aeolus.eu/SimWindFarm/ index.html. [29] Jonkman J, Butterfield S, Musial W, et al.Definition of a 5-MW reference wind turbine for offshore system development[R]. NREL/TP-500-38060, 947422, 2009. [30] Yao Qi, Liu Jizhen, Hu Yang.Optimized active power dispatching strategy considering fatigue load of wind turbines during de-loading operation[J]. IEEE Access, 2019, 7: 17439-17449. [31] Merahi F, Berkouk E, Mekhilef S.New management structure of active and reactive power of a large wind farm based on multilevel converter[J]. Renewable Energy, 2014, 68: 814-828. [32] Regulations for grid connection | Energinet[EB/OL].2019-10-24. https://en.energinet.dk/Electricity/Rules- and-Regulations/Regulations-for-grid-connection. |
|
|
|