|
|
Analysis and Characteristics of Electrode Polarization in Dielectric Spectroscopy of Electrical Materials |
Hou Shuai1, Zhou Fusheng1, Zhao Xuetong2, Li Yupeng2, Nie Yongjie3 |
1. Electric Power Research Institute China Southern Power Grid Guangzhou 510663 China; 2. State Key Laboratory of Power Transmission Equipment and System Security and New Technology Chongqing University Chongqing 400044 China; 3. Electric Power Research Institute Yunnan Power Gird Co. Ltd Kunming 650217 China |
|
|
Abstract Movable charged carriers can accumulate at the electrode-sample interface, generate space charge and give rise to the macroscopic electrode polarization during the dielectric property test. Electrode polarization is often mistaken for the intrinsic electric polarization, or masks the intrinsic electric polarization, resulting in a false performance recognition to electrical materials. Consequently, a clear insight into the electrode polarization is of great importance to further understand dielectric relaxation and analyze the electrical property of electrical materials. In this work, the theory analysis and circuit model were proposed to describe the electrode polarization, which can be experimentally validated by several electrical materials such as organic crosslinked polyethylene (XLPE), inorganic energy storage ceramics and liquid cable oil. It was found that electrode polarization generally occurred at low frequency below 1Hz, resulting from a high leaky conductivity of the sample. Electrode polarization can result in an additional capacitance to the sample, which causes a sharp increase of permittivity at low frequency. Low-frequency dielectric loss deviates from inversely proportional variation with frequency as well as the imaginary part of complex conductivity drops firstly and then increases with the test frequency reducing.
|
Received: 12 July 2020
|
|
|
|
|
[1] 陈季丹, 刘子玉. 电介质物理学[M]. 北京: 机械工业出版社, 1982. [2] 杨峰, 唐超, 周渠, 等. 基于等效电路的油纸绝缘系统受潮状态分析[J]. 电工技术学报, 2020, 35(21): 150-160. Yang Feng, Tang Chao, Zhou Qu, et al.Analyzing the moisture state of oil-paper insulation system using an equivalent circuital model[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 150-160. [3] 黄光磊, 李喆, 杨丰源, 等. 直流交联聚乙烯电缆泄漏电流试验特性研究[J]. 电工技术学报, 2019, 34(1): 192-201. Huang Guanglei, Li Zhe, Yang Fengyuan, et al.Experimental research on leakage current of DC cross linked polyethylene cable[J]. Transactions of China Electrotechnical Society, 2019, 34(1): 192-201. [4] 赵洪山, 张伟韬, 王艳. 基于改进模态分解的中压地埋电缆载波通信信道特性分析[J]. 电力系统自动化, 2019, 43(18): 177-186. Zhao Hongshan, Zhang Weitao, Wang Yan.Modified mode decomposition based channel characteristic analysis of power line carrier communication of medium-voltage underground cables[J]. Automation of Electric Power System, 2019, 43(18): 177-186. [5] Kremer F, Schönhals A.Broadband dielectric spectro-scopy[M]. New York: Springer, 2003. [6] Pizzitutti F, Bruni F.Electrode and interfacial polarization in broadband dielectric spectroscopy measurements[J]. Review of Scientific Instruments, 2001, 72(5): 2502-2504. [7] Serghei A, Tress M, Sangoro J R, et al.Electrode polarization and charge transport at solid inter-faces[J]. Physical Review B, 2009, 80(18): 184301. [8] Emmert S, Wolf M, Gulich R, et al.Electrode polarization effects in broadband dielectric spectro-scopy[J]. European Physical Journal B, 2011, 83(2): 157-165. [9] Lunkenheimer P, Fichtl R, Ebbinghaus S G, et al.Non-intrinsic origin of the colossal dielectric constants in CaCu3Ti4O12[J]. Physical Review B, 2004, 70(17): 172102. [10] Wang C C, Zhang L W.Surface-layer effect in CaCu3Ti4O12[J]. Applied Physics Letters, 2006, 88(4): 042906. [11] Lunkenheimer P, Bobnar V, Pronin A V, et al.Origin of apparent colossal dielectric constants[J]. Physical Review B, 2002, 66(5):052105. [12] Ferrarelli M C, Sinclair D C, West A R, et al.Comment on the origin(s) of the giant permittivity effect in CaCu3Ti4O12 single crystals and ceramics[J]. Journal of Materials Chemistry, 2009, 19(33): 5916-5919. [13] Schwan H P.Alternating current electrode polari-zation[J]. Biophysik, 1966, 3(2): 181-201. [14] Macedo P B, Moynihan C T, Bose R.The role of ionic diffusion in polarisation in vitreous ionic conductors[J]. Physics and Chemistry of Glasses, 1972, 13(6): 171-179. [15] Provenzano V, Macedo P B, Volterra V, et al.Electrical relaxation in Na2O3SiO2 glass[J]. Journal of the American Ceramic Society, 1972, 55(10): 492-496. [16] 尹游, 周凯, 李诗雨, 等. 基于极化去极化电流法的水树老化XLPE电缆界面极化特性分析[J]. 电工技术学报, 2020, 35(12): 2643-2651. Yin You, Zhou Kai, Li Shiyu, et al.Interface polarization characteristics of water tree aged XLPE cables based on polarization and depolarization current method[J]. Transactions of China Electro-technical Society, 2020, 35(12): 2643-2651. [17] 杨丽君, 李仲轩, 姚人允, 等. 获取XLPE绝缘直流电压耐受指数的步进应力试验参数选取方法研究[J]. 电工技术学报, 2019, 34(24): 5244-5251. Yang Lijun, Li Zhongxuan, Yao Renyun, et al.Selection of step-stress test parameters for obtaining DC voltage endurance coefficient of XLPE insu-lation[J]. Transactions of China Electrotechnical Society, 2019, 34(24): 5244-5251. [18] 杜伯学, 韩晨磊, 李进, 等. 高压直流电缆聚乙烯绝缘材料研究现状[J]. 电工技术学报, 2019, 34(1): 179-191. Du Boxue, Han Chenlei, Li Jin, et al.Research status of polyethylene insulation for high voltage direct current cables[J]. Transactions of China Electro-technical Society, 2019, 34(1): 179-191. [19] 赵洪, 栗松, 郑昌佶, 等. 聚丙烯/聚烯烃弹性体复合材料物理机械性能及交流电性能[J]. 电机与控制学报, 2020, 24(3): 28-37. Zhao Hong, Li Song, Zheng Changji, et al.AC performance and physical/mechanical properties of polypropylene/polyolefin elastomers blends[J]. Electric Machines and Control, 2020, 24(3): 28-37. [20] Li Jianying, Zhao Xuetong, Yin Guilai, et al.The effect of accelerated water tree aging on the pro-perties of XLPE cable insulation[J]. IEEE Transa-ctions on Dielectrics and Electrical Insulation, 2011, 18(5): 1562-1569. [21] Jonscher A K.Dielectric relaxation in solids[M]. London: Chelsea Dielectrics Press, 1983. [22] Jonscher A K.Universal relaxation law[M]. London: Chelsea Dielectrics Press, 1996. [23] Subranmanian M A, Li Dong, Duan N, et al.High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases[J]. Journal of Solid State Chemistry, 2000, 151(1): 323-325. [24] Homes C C, Vogt T, Shapiro S M, et al.Optical response of high-dielectric-constant perovskite-relate oxide[J]. Science, 2001, 293(5530): 673-676. [25] Hosier I L, Koilraj J E A, Vaughan A S. Effect of aging on the physical, chemical and dielectric properties of dodecylbenzene cable oil[C]//IEEE International Conference on Dielectrics, Montpellier, France, 2016: 812-815. |
|
|
|