|
|
Synchronous Stability Research of Inverters in Hybrid Microgrid Based on the Quasi-Static Models under Weak Grid |
Yu Yanxue1, Ma Huimin1, Chen Xiaoguang2, Zheng Xuemei1, Li Haoyu1 |
1. School of Electrical Engineering & Automation Harbin Institute of Technology Harbin 150001 China; 2. Electric Power Research Institute of State Grid Heilongjiang Electric Power Co. Ltd Harbin 150030 China |
|
|
Abstract When the multi-inverters are parallelly connected to the weak grid, interactions of the high grid impedance and inverters are easy to result in synchronization stability problems. To study the synchronization stability of the hybrid microgrid (HMG) consisting of current- and voltage-controlled inverters in weak grid, the quasi-static models were developed to analyze the synchronization mechanism of the phase locked loop (PLL) and virtual synchronous generator (VSG) in the HMG, and discuss the influences of interactions between the PLL and VSG on the steady-state operating points of inverters in the HMG. Thus, relationships of the synchronization stability with the grid impedance and grid voltage were derived in the HMG. Then, consider the grid voltage drop fault occurred in weak grid, relationships of the synchronization stability with the steady-state operating point and the synchronization loop parameters were analyzed in the HMG. The experimental results verified theoretical analyses. Researches in this paper can help the HMG to choose the running references and synchronization parameters reasonably.
|
Received: 14 November 2020
|
|
|
|
|
[1] 杨新法, 苏剑, 吕志鹏, 等. 微电网技术综述[J]. 中国电机工程学报, 2014, 34(1): 57-70. Yang Xinfa, Su Jian, Lü Zhipeng, et al. Overview on microgrid technology[J]. Proceedings of the CSEE, 2014, 34(1): 57-70. [2] 刘津铭, 陈燕东, 伍文华, 等. 孤岛微电网序阻抗建模与高频振荡抑制[J]. 电工技术学报, 2020, 35(7): 1538-1552. Liu Jinming, Chen Yandong, Wu Wenhua, et al. Sequence impedance modeling and high-frequency oscillation suppression method for island microgrid[J]. Transactions of China Electrotechnical Society, 2020, 35(7): 1538-1552. [3] 杨苓, 陈燕东, 罗安, 等. 多机并联接入弱电网的改进型带阻滤波器高频振荡的抑制[J]. 电工技术学报, 2019, 34(10): 2079-2091. Yang Ling, Chen Yandong, Luo An, et al. Suppression method of high-frequency oscillation by improved notch filter for multi-parallel inverters connected to weak grid[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2079-2091. [4] Rocabert J, Luna A, Blaabjerg F, et al. Control of power converters in AC microgrids[J]. IEEE Transactions on Power Electronics, 2012, 27(11): 4734-4749. [5] Guan Yajuan.Novel control strategies for parallel-connected inverters in AC microgrids[D]. Aalborg: Aalborg University, 2016. [6] Yu Yanxue, Guerrero J, Zheng Xuemei, et al. Modeling and stability analysis of CCIs- and VCIs-based hybrid microgrids operating in grid-connected modes[C]//IEEE 2018 International Conference on Smart Energy Systems and Technologies (SEST), Sevilla, Spain, 2018: 1-6. [7] 熊连松, 修连成, 王慧敏, 等. 储能系统抑制电网功率振荡的机理研究[J]. 电工技术学报, 2020, 34(20): 4373-4380. Xiong Liansong, Xiu Liancheng, Wang Huimin, et al. Mechanism of energy storage system to suppress grid power oscillations[J]. Transactions of China Electrotechnical Society, 2020, 34(20): 4373-4380. [8] Lu Minghui, Yang Yongheng, Johnson B, et al. An interaction-admittance model for multi-inverter grid-connected systems[J]. IEEE Transactions on Power Electronics, 2019, 34(8): 7542-7557. [9] 谢志为, 陈燕东, 伍文华, 等. 弱电网下多逆变器并网系统的全局高频振荡抑制方法[J]. 电工技术学报, 2020, 35(4): 885-895. Xie Zhiwei, Chen Yandong, Wu Wenhua, et al. A global high-frequency oscillation suppression method for multi-inverter grid-connected system in weak grid[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 885-895. [10] 秦本双, 徐永海, 袁敞, 等. 多VSG并网系统的P/ω导纳建模及功频振荡分析[J]. 中国电机工程学报, 2020, 40(9): 2932-2941. Qin Benshuang, Xu Yonghai, Yuan Chang, et al. The P/ω admittance modeling and power-frequency oscillation analysis of multi-VSGs grid-connected systems[J]. Proceedings of the CSEE, 2020, 40(9): 2932-2941. [11] Taul M G, Wang Xiongfei, Davari P, et al. An overview of assessment methods for synchronization stability of grid-connected converters under severe symmetrical grid faults[J]. IEEE Transactions on Power Electronics, 2019, 34(10): 9655-9670. [12] 朱蜀, 刘开培, 秦亮, 等. 电力电子化电力系统暂态稳定性分析综述[J]. 中国电机工程学报, 2017, 37(14): 3948-3962. Zhu Shu, Liu Kaipei, Qin Liang, et al. Analysis of transient stability of power electronics dominated power system: an overview[J]. Proceedings of the CSEE, 2017, 37(14): 3948-3962. [13] 庄慧敏, 巨辉, 肖建.高渗透率逆变型分布式发电对电力系统暂态稳定和电压稳定的影响[J]. 电力系统保护与控制, 2014, 42(17): 84-89. Zhuang Huimin, Ju Hui, Xiao Jian.Impacts of inverter interfaced distributed generations with high penetration level on power system transient and voltage stability[J]. Power System Protection and Control, 2014, 42(17): 84-89. [14] Wang Xiongfei, Taul M G, Wu Heng, et al. Grid-synchronization stability of converter-based resources-an overview[J]. IEEE Open Journal of Industry Applications, 2020, 1(1): 115-134. [15] Dong Dong, Wen Bo, Boroyevich D, et al. Analysis of phase-locked loop low-frequency stability in three-phase grid-connected power converters considering impedance interactions[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1): 310-321. [16] Wu Heng, Wang Xiongfei.Design-oriented transient stability analysis of PLL-synchronized voltage-source converters[J]. IEEE Transactions on Power Electronics, 2020, 35(4): 3573-3589. [17] Wu Heng, Wang Xiongfei.Design-oriented transient stability analysis of grid-connected converters with power synchronization control[J]. IEEE Transactions on Industrial Electronics, 2019, 66(8): 6473-6482. [18] Pan Donghua, Wang Xiongfei, Liu Fangcheng, et al. Transient stability of voltage-source converters with grid-forming control: a design-oriented study[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(2): 1019-1033. [19] Shuai Zhikang, Shen Chao, Liu Xuan, et al. Transient angle stability of virtual synchronous generators using Lyapunov’s direct method[J]. IEEE Transactions Smart Grid, 2019, 10(4): 4648-4661. [20] Chen Junru, O'Donnell T.Parameter constraints for virtual synchronous generator considering stability[J]. IEEE Transactions on Power Systems, 2019, 34(3): 2479-2481. |
|
|
|