|
|
Current Control Strategy for High-Speed Maglev in the Double Feeding Mode |
Zhu Jinquan1,2, Ge Qiongxuan1, Sun Pengkun1,2, Wang Xiaoxin1, Zhang Bo1 |
1. Key Laboratory of Power Electronics and Electric Drive Institute of Electrical Engineering Chinese Academy of Sciences Beijing 100190 China; 2. University of Chinese Academy of Sciences Beijing 100049 China |
|
|
Abstract In order to solve the problems of circulating current and large loss of high-speed maglev train in the double feeding mode, an improved direct mode current control strategy is proposed to regulate the load current distribution. Firstly, the paper establishes the equivalent circuit model of motor current and circulating current of traction system in the double feeding mode. Then, the reason of the circulating current is analyzed, and a double closed-loop control strategy of speed and current in synchronous coordinate system is proposed. This strategy controls the motor current by the speed regulator, distributes the motor current through the current regulator and the circulating current regulator, and suppresses the circulating current in the line. The results of hardware-in-the-loop (HIL) experiments show that the control strategy realizes the load current distribution of the inverter, reduces the loss on the feeder cable, and effectively suppresses the circulating current between the parallel inverter while ensuring good dynamic performance of the motor.
|
Received: 15 August 2020
|
|
|
|
|
[1] Hellinger R, Mnich P.Linear motor-powered trans- portation: history, present status, and future outlook[J]. Proceedings of the IEEE, 2009, 97(11): 1892-1900. [2] 朱进权, 葛琼璇, 孙鹏琨, 等. 基于自抗扰的高速磁悬浮列车牵引控制策略[J]. 电工技术学报, 2020, 35(5): 1065-1074. Zhu Jinquan, Ge Qiongxuan, Sun Pengkun, et al.Traction-system research of high-speed maglev based on active disturbance rejection control[J]. Transa- ctions of China Electrotechnical Society, 2020, 35(5): 1065-1074. [3] Narimani M, Moschopoulos G.Improved method for paralleling reduced switch VSI modules: harmonic content and circulating current[J]. IEEE Transactions on Power Electronics, 2014, 29(7): 3308-3317. [4] Wang Zheng, Chen Jian, Cheng Ming, et al.Field- oriented control and direct torque control for paralleled VSIs fed PMSM drives with variable switching frequencies[J]. IEEE Transactions on Power Electronics, 2016, 31(3): 2417-2428. [5] Matsui K, Kawata Y, Ueda F.Application of parallel connected NPC-PWM inverters with multilevel modulation for AC motor drive[J]. IEEE Transactions on Power Electronics, 2000, 15(5): 901-907. [6] 王政, 郑杨, 张兵, 等. 并联逆变器馈电PMSM调速系统谐波和环流控制[J]. 电机与控制学报, 2014, 18(12): 64-71. Wang Zheng, Zheng Yang, Zhang Bing, et al.Harmonics and circulating current suppression in paralleled inverters fed permanent magnet synchronous motor drive system[J]. Electric Machines and Control, 2014, 18(12): 64-71. [7] Quan Zhongyi, Li Yunwei.A three-level space vector modulation scheme for paralleled converters to reduce circulating current and common-mode voltage[J]. IEEE Transactions on Power Electronics, 2017, 32(1): 703-714. [8] Jiang Dong, Shen Zewei, Wang Fei.Common-mode voltage reduction for paralleled inverters[J]. IEEE Transactions on Power Electronics, 2018, 33(5): 3961-3974. [9] Li Ru, Xu Dianguo.Parallel operation of full power converters in permanent-magnet direct-drive wind power generation system[J]. IEEE Transactions on Industrial Electronics, 2013, 60(4): 1619-1629. [10] Cai Hui, Zhao Rongxiang, Yang Huan.Study on ideal operation status of parallel inverters[J]. IEEE Transa- ctions on Power Electronics, 2008, 23(6): 2964-2969. [11] 吕晓美. 大功率三电平逆变器并联、串联运行特性分析[D]. 北京: 中国科学院电工研究所, 2011. [12] Wang Fei, Wang Yong, Gao Qiang, et al.A control strategy for suppressing circulating currents in parallel-connected PMSM drives with individual DC links[J]. IEEE Transactions on Power Electronics, 2016, 31(2): 1680-1691. [13] 魏永清, 张晓锋, 于飞, 等. 直流侧独立供电的混合型逆变器控制策略[J]. 电工技术学报, 2017, 32(24): 139-145. Wei Yongqing, Zhang Xiaofeng, Yu Fei, et al.Control strategy of hybrid inverters with independent supplies in DC side[J]. Transactions of China Electrotechnical Society, 2017, 32(24): 139-145. [14] Hua Ming, Hu Haibing, Yang Xing, et al.Distributed control for AC motor drive inverters in parallel operation[J]. IEEE Transactions on Industrial Electronics, 2011, 58(12): 5361-5370. [15] 刘金鑫, 葛琼璇, 王晓新, 等. 高速磁悬浮牵引控制系统半实物实验研究[J]. 电工技术学报, 2015, 30(14): 497-503. Liu Jinxin, Ge Qiongxuan, Wang Xiaoxin, et al.Hardware-in-loop research of traction-system for high-speed maglev[J]. Transactions of China Electro- technical Society, 2015, 30(14): 497-503. [16] Tan Qiang, Wei Rong, Wang Xiaoxin, et al.Traction- system research based on different proportion of current in double-end supply for high-speed maglev[C]//2017 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, NSW, 2017: 1-5. [17] 张建文, 王鹏, 王晗, 等. 多逆变器并联的均流控制策略[J]. 电工技术学报, 2015, 30(18): 61-68. Zhang Jianwen, Wang Peng, Wang Han, et al.Average current control strategy of multiple parallel inverters[J]. Transactions of China Electrotechnical Society, 2015, 30(18): 61-68. [18] 曹文远, 韩民晓, 谢文强, 等. 交直流配电网逆变器并联控制技术研究现状分析[J]. 电工技术学报, 2019, 34(20): 4226-4241. Cao Wenyuan, Han Minxiao, Xie Wenqiang, et al.Analysis on research status of parallel inverters control technologies for AC/DC distribution net- work[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4226-4241. [19] 刘金鑫, 葛琼璇, 王晓新, 等. 双端供电模式下高速磁悬浮列车牵引控制策略研究[J]. 电工电能新技术, 2015, 34(6): 16-21. Liu Jinxin, Ge Qiongxuan, Wang Xiaoxin, et al.Traction-system research for high-speed maglev based on double end supply[J]. Advanced Tech- nology of Electrical and Energy, 2015, 34(6): 16-21. [20] 王娟. 磁悬浮列车用长定子直线同步电机特性研究与故障分析[D]. 北京: 中国科学院电工研究所, 2004. [21] 孙鹏琨, 葛琼璇, 王晓新, 等. 基于硬件在环实时仿真平台的高速磁悬浮列车牵引控制策略[J]. 电工技术学报, 2020, 35(16): 3426-3435. Sun Pengkun, Ge Qiongxuan, Wang Xiaoxin, et al.Traction control strategy of high-speed maglev train based on hardware-in-the-loop real-time simulation platform[J]. Transactions of China Electrotechnical Society, 2020, 35(16): 3426-3435. |
|
|
|