|
|
Diffusion Model of DC Dynamic Stray Current in Layered Soil |
Liu Wei1, Yin Yichen1, Pan Weiguo2, Yang Long1, Zhang Hao1 |
1. School of Electric Engineering Southwest Jiaotong University Chengdu 610031 China; 2. Beijing National Railway Communication Signal Research and Design Institute Group Co. Ltd Beijing 100071 China |
|
|
Abstract In order to study the interference range and influence degree of the stray current of the DC traction power supply system, the distributed circuit of the return system was equivalent to a centralized circuit. The node voltage method is used to calculate the system power flow. Accordingly, a dynamic distribution model of the stray current over time was established, and the diffusion model of dynamic stray current in layered media was established by the superposition principle. The Prony method was used to solve the model. Compared with the simulation results of CDEGS software, the ground potential calculation error was within 8.66%. A domestic subway line adopts 6B grouping, the maximum speed is 80km/h, the departure interval is 2min, the concrete resistivity is 0.503Ω·km, and the soil resistivity is 38.9Ω·m. When the distance between the buried metal structure and the subway line is 50m, the rail transition resistance value is increased to more than 40Ω·km, or when the rail transition resistance value is 5.31Ω·km, the distance between the buried metal structure and the subway line is increased to more than 0.25km, and the ground potential gradient along the line is less than 2.5mV/m, which means shortening the power supply distance can reduce stray current interference.
|
Received: 07 January 2021
|
|
|
|
|
[1] Tzeng Y S, Lee C H.Analysis of rail potential and stray currents in a direct-current transit system[J]. IEEE Transactions on Power Delivery, 2010, 25(3): 1516-1525. [2] Dolara A, Foiadelli F, Leva S.Stray current effects mitigation in subway tunnels[J]. IEEE Transactions on Power Delivery, 2012, 27(4): 2304-2311. [3] 王慧康, 杨晓峰, 倪梦涵, 等. 轨道电位与杂散电流动模实验平台[J]. 电工技术学报, 2020, 35(17): 3609-3618. Wang Huikang, Yang Xiaofeng, Ni Menghan, et al.Experimental platform for orbital potential and stray current flow mode[J]. Transactions of China Electro- technical Society, 2020, 35(17): 3609-3618. [4] 孟晓波, 曹方圆, 廖永力, 等. 抑制直流接地极影响的管道绝缘防护措施分析[J]. 高电压技术, 2017, 43(12): 3900-3906. Meng Xiaobo, Cao Fangyuan, Liao Yongli, et al.Analysis of pipeline insulation protection measures to suppress the influence of DC grounding electrode[J]. High Voltage Engineering, 2017, 43(12): 3900-3906. [5] 杜贵府, 张栋梁, 王崇林, 等. 直流牵引供电系统电流跨区间传输对钢轨电位影响[J]. 电工技术学报, 2016, 31(11): 129-139. Du Guifu, Zhang Dongliang, Wang Chonglin, et al.Effect of traction current transmission among power sections on rail potential in DC mass transit system[J]. Transactions of China Electrotechnical Society, 2016, 31(11): 129-139. [6] Du Guifu, Wang Jun.Evaluation of rail potential and stray current with dynamic traction networks in multi-train subway systems[J]. IEEE Transactionson Transportation Electrification, 2020, DOI: 10.1109/TTE.2020.2980745. [7] 杨晓峰, 薛皓, 郑琼林. 基于双向可变电阻模块的杂散电流与轨道电位动态模拟系统[J]. 电工技术学报, 2019, 34(13): 2793-2805. Yang Xiaofeng, Xue Hao, Zheng Qionglin.Stray current and rail potential dynamic simulation system based on bidirectional variable resistance module[J]. Transactions of China Electrotechnical Society, 2019, 34(13): 2793-2805. [8] 蔡力, 王建国, 樊亚东, 等. 地铁走行轨对地过渡电阻杂散电流分布的影响[J]. 高电压技术, 2015, 41(11): 3604-3610. Cai Li, Wang Jianguo, Fan Yadong, et al.Influence of the track-to-earth resistance of subway on stray current distribution[J]. High Voltage Engineering, 2015, 41(11): 3604-3610. [9] 胡云进, 钟振, 方镜平. 地铁杂散电流场的有限元模拟[J]. 中国铁道科学, 2011, 32(6): 129-133. Hu Yunjin, Zhong Zhen, Fang Jingping.Finite element simulation of subway stray current field[J]. China Railway Science, 2011, 32(6): 129-133. [10] 王果, 裴潇湘. 地铁常用隧道杂散电流场三维有限元模拟[J]. 铁道科学与工程学报, 2014, 11(6): 85-91. Wang Guo, Pei Xiaoxiang.Three dimensional finite element simulation of stray current field in common subway tunnels[J]. Journal of Railway Science and Engineering, 2014, 11(6): 85-91. [11] Wu Guoxing, Wang Peng, Li Junyi, et al.Influence of stray current on ground potential distribution of urban rail transit[C]//2019 IEEE Sustainable Power and Energy Conference (iSPEC), Beijing, China, 2019: 2227. [12] 王爱民, 林圣, 李俊逸, 等. 城市轨道交通长线路杂散电流仿真模型[J]. 高电压技术, 2020, 46(4): 1379-1386. Wang Aimin, Lin Sheng, Li Junyi, et al.Simulation model of stray current in long line of urban rail transit[J]. High Voltage Engineering, 2020, 46(4): 1379-1386. [13] 王禹桥, 黄玉坚, 彭成宽, 等. 基于地表电位梯度的地铁杂散电流动态干扰范围评估模型[J]. 北京交通大学学报, 2020, 11(6): 85-91. Wang Yuqiao, Huang Yujian, Peng Chengkuan, et al.An evaluation model for the dynamic interference range of subway stray current based on surface potential gradient[J]. Journal of Beijing Jiaotong University, 2020, 11(6): 85-91. [14] 朱峰, 李嘉成, 曾海波, 等. 城市轨道交通轨地过渡电阻对杂散电流分布特性的影响[J]. 高电压技术, 2018, 44(8): 2738-2745. Zhu Feng, Li Jiacheng, Zeng Haibo, et al.Influence of rail-to-earth resistance of urban transit system on distribution characteristics of stray current[J]. High Voltage Engineering, 2018, 44(8): 2738-2745. [15] 李中新, 袁建生. 变电站接地网模拟计算[J]. 中国电机工程学报, 1999, 19(5): 76-79. Li Zhongxin, Yuan Jiansheng.Simulation calculation of substation grounding grid[J]. Proceedings of the CSEE, 1999, 19(5): 76-79. [16] GB 50991-2014 埋地钢质管道直流干扰防护技术标准[S]B 50991-2014 埋地钢质管道直流干扰防护技术标准[S]. 北京: 中国计划出版社, 2015. [17] CJJT 49-2020 地铁杂散电流腐蚀防护技术标准[S]CJJT 49-2020 地铁杂散电流腐蚀防护技术标准[S]. 北京: 中国计划出版社, 2020. |
|
|
|