|
|
Research Progress on the Superconducting DC Energy Pipeline |
Zhang Guomin1,2,3, Chen Jianhui1,2,3, Qiu Qingquan1,2, Jing Liwei1,2, Teng Yuping1,2, Zhao Yanxing4, Jiang Xiaohua5, Tan Hongbo6, Gong Maoqiong4, Li Zhenming7, Qiu Ming7, Zhang Hongjie7 |
1. Key Laboratory of Applied Superconductivity Chinese Academy of Sciences (CAS) Beijing 100190 China; 2. Institute of Electrical Engineering CAS Beijing 100190 China; 3. University of Chinese Academy of Sciences Beijing 100049 China; 4. Technical Institute of Physics and Chemistry CAS Beijing 100080 China; 5. Department of Electrical Engineering Tsinghua University Beijing 100084 China; 6. School of Energy and Power Engineering Xi'an Jiaotong University Xi'an 710049 China; 7. Electric Power Research Institute Beijing 100192 China |
|
|
Abstract The combination of superconducting transmission technology and LNG pipeline transportation technology to form an energy pipeline to transport LNG and electricity at the same time, can not only alleviate the tension of energy channels but also improve energy transmission efficiency and economy by using LNG to cool superconducting cables, which is a promising energy transmission mode. Therefore, supported by the national "smart grid and equipment" key research and development plan, we carried out the basic research on the superconducting DC energy pipeline. This paper mainly introduces the research progress of the superconducting DC energy pipeline project in the recent one and a half year, which includes: the low-temperature liquid-solid transition mechanism, the heat transfer and flow characteristics of mixed LNG mixtures, the dynamic stability criterion of integrated power/LNG transportation, the experimental platform and preliminary experimental results for safety and fault evolution analysis, and the development and test of the 10m/10kV energy pipeline prototype.
|
Received: 03 July 2020
|
|
|
|
|
[1] 周长城, 马溪原, 郭祚刚, 等. 面向工程应用的用户级综合能源系统规划[J]. 电工技术学报, 2020, 35(13): 2843-2854. Zhou Changcheng, Ma Xiyuan, Guo Zuogang, et al.User-level integrated energy system planning for engineering applications[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2843-2854. [2] 高克利, 颜湘莲, 刘焱, 等. 环保气体绝缘管道技术研究进展[J]. 电工技术学报, 2020, 35(1): 3-20. Gao Keli, Yan Xianglian, Liu Yan, et al.Progress of technology for environment-friendly gas insulated transmission line[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 3-20. [3] 王建华, 项彬, 杨騉, 等. 超导限流直流开断技术研究[J]. 电工技术学报, 2019, 34(20): 4196-4207. Wang Jianhua, Xiang Bin, Yang Kun, et al.Superconducting fault current limiting DC current interrupting technology[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4196-4207. [4] 李争, 张蕊, 孙鹤旭, 等. 可再生能源多能互补制-储-运氢关键技术综述[J]. 电工技术学报, 2021, 36(3): 446-462. Li Zheng, Zhang Rui, Sun Hexu, et al.Review on key technologies of hydrogen generation, storage and transportation based on multi-energy complementary renewable energy[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 446-462. [5] 肖立业,林良真. 超导输电技术发展现状与趋势[J]. 电工技术学报, 2015, 30(7): 1-9. Xiao Liye, Lin Liangzhen.Status quo and trends of superconducting power transmission technology[J]. Transactions of China Electrotechnical Society, 2015, 30(7): 1-9. [6] Ishigohka T.A feasibility study on a world-wide-scale superconducting power transmission system[J]. IEEE Transactions on Applied Superconductivity, 1995, 5(2): 949-952. [7] Grant P M.The supercable: dual delivery of chemical and electric power[J]. IEEE Transactions on Appiled Superconductivity, 2005, 15(2): 1810-1813. [8] Yamada S, Hishinuma Y, Uede T, et al.Study on 1GW class hybrid energy transfer line of hydrogen and electricity[J]. Journal of Physics: Conference Series, 2008, 97: 012167. [9] Nakayama T, Yagai T, Tsuda M, et al.Micro power grid system with SMES and superconducting cable modules cooled by liquid hydrogen[J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 2062-2065. [10] Yamada S, Hishinuma Y, Uede T, et al.Conceptual design of 1GW class hybrid energy transfer line of hydrogen and electricity[J]. Journal of Physics: Conference Series, 2010, 234(3): 32064. [11] Trevisani L, Fabbri M, Negrini F.Long-term scenarios for energy and environment: energy from the desert with very large solar plants using liquid hydrogen and superconducting technologies[J]. Fuel Processing Technology, 2006, 87(2): 157-161. [12] Trevisani L, Fabbri M, Negrini F.Long distance renewable-energy-sources power transmission using hydrogen-cooled MgB2 superconducting line[J]. Cryogenics, 2007, 47(2): 113-120. [13] Vysotsky V S, Nosov A A, Fetisov S S, et al.Hybrid energy transfer line with liquid hydrogen and superconducting MgB2 cable—first experimental proof of concept[J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3): 5400906. [14] 李振明, 崔亚林, 刘伟, 等. 液氢温区超导电缆本体设计与短样试验[J]. 低温与超导, 2018, 46(1):54-58. Li Zhenming, Cui Yalin, Liu Wei, et al.Design and experiment of superconducting cable sample at the temperature of liquid hydrogen[J]. Cryogenics & Superconductivity, 2018, 46(1): 54-58. [15] Zhang Yang, Tan Hongbo, Li Yanzhong, et al.Feasibility analysis and application design of a novel long-distance natural gas and electricity combined transmission system[J]. Energy, 2014, 77: 710-719. [16] 张杨, 厉彦忠, 谭宏博, 等. 天然气与电力长距离联合高效输送的可行性研究[J]. 西安交通大学学报, 2013, 47(9): 1-7. Zhang Yang, Li Yanzhong, Tan Hongbo, et al.Efficient long-distance energy transmission conception[J]. Journal of Xi'an Jiaotong University, 2013, 47(9): 1-7. [17] Yamaguchi S, Watanabe H.Superconducting power transmission system and cooling method: U.S., US09767941B2[P], 2017. [18] Qiu Qingquan, Xiao Liye, Zhang Guomin, et al.Design and testing of a 10kV/1kA superconducting energy pipeline prototype for electric power and liquid natural gas transportation[J]. Superconductor Science & Technology, 2020, 33(9): 95007. [19] Chen Jianhui, Zhang Guomin, Qiu Qingquan, et al.Simulation and experiment on superconducting DC energy pipeline cooled by LNG[J]. Cryogenics, 2020, 112: 103128. [20] Qiu Qingquan, Zhang Guomin, Xiao Liye, et al.General design of ±100kV/1kA energy pipeline for electric power and LNG transportation[J]. Cryogenics, 2020, 109: 103120. [21] Wang Lina, Bai Guannan, Zhang Runtao, et al.Concept design of 1GW LH2-LNG-superconducting energy pipeline[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(2): 1-2. [22] Chen Yu, Jiang Shan, Chen Xiaoyuan, et al.Preliminary design and evaluation of large-diameter superconducting cable toward GW-class hybrid energy transfer of electricity, liquefied natural gas, and liquefied nitrogen[J]. Energy Science & Engineering, 2020, 8(5): 1811-1823. [23] 陈孝元. 一种液氢-液氧-液氮-超导直流电缆复合能源传输系统: 中国, CN105162158B[P]. 2018. Chen Xiaoyuan.A hybrid energy transmission system of liquid hydrogen-liquid oxygen-liquid nitrogen-superconducting DC cable: China, 2018, CN105162158B[P]. 2018. [24] Gong Maoqiong, Ma Jia, Wu Jianfeng, et al.Nucleate pool boiling of liquid methane and its natural gas mixtures[J]. International Journal of Heat and Mass Transfer, 2009, 52(11-12): 2733-2739. [25] Gong Maoqiong, Zhao Yanxing, Dong Xueqiang.Cryogenic liquid medium: U.S., 16/368000[P], 2020. [26] 宋庆路. 基于流型的R14及R14/R170混合物水平管内流动冷凝特性研究[D]. 北京: 中国科学院大学, 2020. [27] Ohya M, Masuda T, Nakano T, et al.New HTS cable project in japan: basic study on ground fault characteristics of 66-kV class cables[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(3): 1-4. [28] Maruyama O, Nakano T, Mimura T, et al.Fundamental study of ground fault accident in HTS cable[J]. IEEE Transactions on Applied Superconductivity, 2017, 27(4): 1-5. |
|
|
|