|
|
Topology and Modulation Strategy for Switched Capacitor Inverter with Low Voltage Stress and High Level |
Wang Yaoqiang1,2, Zhang Hengtai1,2, Lai Jinmu1,2, Wang Kewen1,2, Liang Jun1,3 |
1. School of Electrical Engineering Zhengzhou University Zhengzhou 450001 China; 2. Henan Engineering Research Center of Power Electronics and Energy Systems Zhengzhou 450001 China; 3. Cardiff University Cardiff CF243AA U. K. |
|
|
Abstract In order to improve the boost capability and output power quality of inverters in the renewable energy power generation system, this paper proposed a switched capacitor inverter with low voltage stress and high-level characteristics. The proposed topology has one input DC source, three capacitors and fifteen switching devices, which can achieve four times voltage gain and seventeen-level output waveform. Compared with other topologies, the performance of the proposed inverter can generate more output levels with fewer switching devices, reducing the voltage stress of switching devices and the harmonic content of inverter output voltage. Moreover, the inversion process can be realized without a back-end H-bridge, and the voltage stress of switches is reduced effectively. In addition, the proposed inverter has small voltage ripple, and the capacitor voltage self-balancing performance simplifies the complexity of the controller. The paper introduces the topology, working principle, and modulation strategy of the proposed inverter in detail, and analyzes the calculation of voltage ripples. The proposed inverter shows excellent performance compared to various switched capacitor topologies. Finally, the feasibility of the proposed inverter and the correctness of the theoretical analysis are verified by the experimental results.
|
Received: 01 March 2020
|
|
|
|
|
[1] 黄伟, 刘斯亮, 羿应棋, 等. 基于光伏并网点电压优化的配电网多时间尺度趋优控制[J]. 电力系统自动化, 2019, 43(3): 92-100. Huang Wei, Liu Siliang, Yi Yingqi, et al.Multi-time-scale slack optimal control in distribution network based on voltage optimization for point of common coupling of PV[J]. Automation of Electric Power Systems, 2019, 43(3): 92-100. [2] Zhang Xing, Wang Mingda, Zhao Tao, et al.Topolo-gical comparison and analysis of medium-voltage and high-power direct-linked PV inverter[J]. CES Transa-ctions on Electrical Machines and Systems, 2019, 3(4): 327-334. [3] 钱强, 魏琦, 谢少军, 等. 单相并网逆变器多频阻抗模型及其在谐振环流分析中的应用[J]. 电力系统自动化, 2019, 43(15): 159-165. Qian Qiang, Wei Qi, Xie Shaojun, et al.Multi-frequency impedance model of single-phase grid-connected inverter and its application in analysis of resonant circulating current[J]. Automation of Electric Power Systems, 2019, 43(15): 159-165. [4] Ye Yuanmao, Chen Shikai, Zhang Xianyong, et al.Half-bridge modular switched-capacitor multilevel inverter with hybrid pulse width modulation[J]. IEEE Transactions on Power Electronics, 2020, 35(9): 8237-8247. [5] Mhiesan H, Wei Y, Siwakoti Y, et al.A fault-tolerant hybrid cascaded H-bridge multilevel inverter[J]. IEEE Transactions on Power Electronics, 2020, 35(12): 12702-12715. [6] 王要强, 周成龙, 李忠文, 等. 单电源自均压九电平逆变器及其调制策略[J]. 电工技术学报, 2020, 35(4): 817-826. Wang Yaoqiang, Zhou Chenglong, Li Zhongwen, et al.Single-source self-voltage-balancing nine-level inverter and its modulation strategy[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 817-826. [7] 王鹏帅, 韩如成. 多电平逆变器主电路拓扑结构综述[J]. 自动化仪表, 2013, 34(10): 9-12,16. Wang Pengshuai, Han Rucheng.Survey of the topological structure of main circuit of multilevel inverter[J]. Process Automation Instrumentation, 2013, 34(10): 9-12,16. [8] 吴子阳, 肖岚, 姚志垒, 等. 基于滞环电流控制具有升压能力非隔离双接地光伏并网逆变器[J]. 中国电机工程学报, 2021, DOI: 10.13334/j.0258-8013.pcsee. 201699. Wu Ziyang, Xiao Lan, Yao Zhilei, et al.Double-grounded transformer-less photovoltaic grid-connected inverter with boost capacity based on hysteresis current control[J]. Proceeding of the CSEE, 2021, DOI: 10.13334/j.0258-8013.pcsee.201699. [9] Fang Xupeng, Tian Yingying, Ding Xiaokang, et al.Series-type switched-inductor Z-source inverter[J]. CES Transactions on Electrical Machines and Systems, 2020, 4(1): 53-60. [10] Peng Wei, Ni Qiang, Qiu Xiaohua, et al.Seven-level inverter with self-balanced switched-capacitor and its cascaded extension[J]. IEEE Transactions on Power Electronics, 2019, 34(12): 11889-11896. [11] Vijeh M, Rezanejad M, Samadaei E, et al.A general review of multilevel inverters based on main sub-modules: structural point of view[J]. IEEE Transa-ctions on Power Electronics, 2019, 34(10): 9479-9502. [12] 王要强, 袁艺森, 陈天锦, 等. T型开关电容可扩展多电平逆变器[J]. 电工技术学报, 2020, 35(24): 5115-5124. Wang Yaoqiang, Yuan Yisen, Chen Tianjin, et al.Extensible T-type switched capacitor multilevel inverter[J]. Transactions of China Electrotechnical Society, 2020, 35(24): 5115-5124. [13] 曾君, 吴佳磊, 刘俊峰, 等. 一对基于开关电容原理的多电平高频逆变器[J]. 电工技术学报, 2018, 33(6): 1312-1319. Zeng Jun, Wu Jialei, Liu Junfeng, et al.A pair of high-frequency multilevel inverters based on switched-capacitor technique[J]. Transactions of China Electrotechnical Society, 2018, 33(6): 1312-1319. [14] Jahan H K, Abapour M, Zare K.Switched-capacitor based single-source cascaded H-bridge multilevel inverter featuring boosting ability[J]. IEEE Transa-ctions on Power Electronics, 2019, 34(2): 1113-1124. [15] Samizadeh M, Yang X, Karami B, et al.A new topology of switched-capacitor multilevel inverter with eliminating leakage current[J]. IEEE Access, 2020, 8: 76951-76965. [16] Siddique M D, Mekhilef S, Sanjeevikumar P, et al.Single phase step-up switched-capacitor based multi-level inverter topology with SHEPWM[J]. IEEE Transactions on Industry Applications, 2020, DOI: 10.1109/TIA.2020.3002182. [17] Siddique M D, Mekhilef S, Shah N, et al.A single DC source nine-level switched-capacitor Boost inverter topology with reduced switch count[J]. IEEE Access, 2020, 8: 5840-5851. [18] Nakagawa Y, Koizumi H.A Boost type nine-level switched capacitor inverter[J]. IEEE Transactions on Power Electronics, 2019, 34(7): 6522-6532. [19] Liu Junfeng, Lin Weijie, Wu Jialei, et al.A novel nine-level quadruple Boost inverter with inductive-load ability[J]. IEEE Transactions on Power Electronics, 2019, 34(5): 4014-4018. [20] Amir T, Adabi J, Mohammad R.A multilevel inverter structure based on a combination of switched-capacitors and DC sources[J]. IEEE Transactions on Industrial Informatics, 2017, 13(5): 2162-2171. [21] Samadaei E, Kaviani M, Bertilsson K.A 13-levels module (K-type) with two DC sources for multilevel inverters[J]. IEEE Transactions on Industrial Elec-tronics, 2018, 66(7): 5186-5196. [22] 张琦, 李江江, 孙向东, 等. 单相级联七电平逆变器拓扑结构及其控制方法[J]. 电工技术学报, 2019, 34(18): 3843-3853. Zhang Qi, Li Jiangjiang, Sun Xiangdong, et al.Topology and control method of single-phase cascaded seven-level inverter[J]. Transactions of China Elec-trotechnical Society, 2019, 34(18): 3843-3853. [23] 高瞻, 李耀华, 葛琼璇, 等. 低载波比下三电平中点钳位变流器改进型同步载波脉宽调制策略研究[J]. 电工技术学报, 2020, 35(18): 3894-3907. Gao Zhan, Li Yaohua, Ge Qiongxuan, et al.Research on improved synchronized carrier based PWM for three-level neutral point clamped converter under low carrier ratio[J]. Transactions of China Electro-technical Society, 2020, 35(18): 3894-3907. [24] Darus R, Pou J, Konstantinou G, et al.A modified voltage balancing algorithm for the modular multi-level converter: evaluation for staircase and phase-disposition PWM[J]. IEEE Transactions on Power Electronics, 2015, 30(8): 4119-4127. [25] Ye Yuanmao, Cheng K W E, Liu Junfeng, et al. A step-up switched-capacitor multilevel inverter with self-voltage balancing[J]. IEEE Transactions on Industrial Electronics, 2014, 61(12): 6672-6680. [26] Youhei H, Hirotaka K.A switched-capacitor inverter using series/parallel conversion with inductive load[J]. IEEE Transactions on Industrial Electronics, 2012, 59(2): 878-887. [27] Taghvaie A, Adabi J, Rezanejad M.A self-balanced step-up multilevel inverter based on switched-capacitor structure[J]. IEEE Transactions on Power Electronics, 2018, 33(1): 199-209. [28] Zamiri E, Vosoughi N, Hosseini S H, et al.A new cascaded switched-capacitor multilevel inverter based on improved series-parallel conversion with less number of components[J]. IEEE Transactions on Industrial Electronics, 2016, 63(6): 3582-3594. [29] 叶远茂, 林明亮. 基于开关电容的单电源升压型多电平逆变器[J]. 中国电机工程学报, 2020, 40(17): 5636-5643. Ye Yuanmao, Lin Mingliang.Single source step-up multilevel inverter based on switched-capacitor[J]. Proceedings of the CSEE, 2020, 40(17): 5636-5643. [30] 杨庆文, 何绍民, 杨欢, 等. 考虑故障特性模拟的虚拟电机系统及其控制[J]. 电工技术学报, 2020, 35(6): 1239-1250. Yang Qingwen, He Shaomin, Yang Huan, et al.Virtual motor system considering fault characteristic simulation and its control strategy[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 1239-1250. |
|
|
|