|
|
Analysis on the Development Process of Arc Channel for Underwater High Current Pulsed Discharge |
Liu Yi1,2, Zhao Yong1, Ren Yijia1, Lin Fuchang1,2, Li Hua1,2 |
1. State Key Laboratory of Advanced Electromagnetic Engineering and Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China; 2. Key Laboratory of Pulsed Power Technology Ministry of Education Huazhong University of Science and Technology Wuhan 430074 China |
|
|
Abstract There are two problems in solving the arc channel injection energy with the help of the bragenskii impedance model. The first problem is that the process of solving the discharge coefficient related to the experimental setup is complicated, and the second problem is that the solution results are difficult to accurately reflect the channel development characteristics. Therefore, an analysis method of arc channel development process of underwater high current pulsed discharge based on arc channel voltage and current is proposed. The “piston” model was used to describe the rapid expansion process of the channel and the mechanism of shock wave generation. Based on the measured voltage and current of arc channel, removing the inductance component, a method to calculate the injected channel energy was proposed. The energy balance equation was used to model and analyze the channel development process. Compared with the solution results based on the Braginskii impedance model, the method proposed in this paper can more accurately describe the accelerated expansion characteristics of the arc channel, and can provide a basis for in-depth exploration of the development mechanism of the arc channel.
|
Received: 25 May 2020
|
|
|
|
|
[1] 徐箭, 廖思阳, 魏聪颖, 等. 基于广域量测信息的配电网协调控制技术展望[J]. 电力系统自动化, 2020, 44(18): 12-24. Xu Jian, Liao Siyang, Wei Congying, et al.Prospect of distribution network coordinated control tech- nology based on wide area measurement infor- mation[J]. Automation of Electric Power Systems, 2020, 44(18): 12-24. [2] 李军, 李世昌. 基于K-SVD-OMP的稀疏表示方法在电力负荷预测中的应用[J]. 电机与控制学报, 2020, 24(9): 156-164, 172. Li Jun, Li Shichang.Application of sparse represent- ation method based on K-SVD-OMP in power load forecasting[J]. Electric Machines and Control, 2020, 24(9): 156-164, 172. [3] 赵希梅, 刘超, 朱国昕. 永磁直线同步电机自适应非线性滑模控制[J]. 电机与控制学报, 2020, 24(7): 39-47. Zhao Ximei, Liu Chao, Zhu Guoxin.Adaptive nonlinear sliding mode control of permanent magnet linear synchronous motor[J]. Electric Machines and Control, 2020, 24(7): 39-47. [4] Zhang Dongdong, Liu Tianhao.Effects of voltage sag on the performance of induction motor based on a new transient sequence component method[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(3): 316-324. [5] 刘克富, 赵海洋, 邱剑. 快脉冲放电等离子体用于难降解污水处理[J]. 高电压技术, 2009, 34(1): 12-16. Liu Kefu, Zhao Haiyang, Qiu Jian.Fast pulsed discharge plasma for the treatment of refractory sewage[J]. High Voltage Engineering, 2009, 34(1): 12-16. [6] 律方成, 詹振宇, 张立国, 等. 等离子体氟化改性微米AlN填料对环氧树脂绝缘性能的影响[J]. 电工技术学报, 2019, 34(16): 3522-3531. Lü Fangcheng, Zhan Zhenyu, Zhang Liguo, et al.Effect of plasma fluorinated micron AlN fillers on the insulation properties of epoxy resin[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3522-3531. [7] 张凯, 王瑞雪, 韩伟, 等. 等离子体重油加工技术研究进展[J]. 电工技术学报, 2016, 31(24): 1-15. Zhang Kai, Wang Ruixue, Han Wei, et al.Research progress of plasma body weight oil processing technology[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 1-15. [8] 王志强, 曹云霄, 邢政伟, 等. 高压脉冲放电破碎菱镁矿石的实验研究[J]. 电工技术学报, 2019, 34(4): 863-870. Wang Zhiqiang, Cao Yunxiao, Xing Zhengwei, et al.Experimental study on crushing magnesite ore by high voltage pulse discharge[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 863-870. [9] 刘毅, 李志远, 李显东, 等. 水中脉冲激波对模拟岩层破碎试验[J]. 电工技术学报, 2016, 31(24): 71-78. Liu Yi, Li Zhiyuan, Li Xiandong, et al.Test of simulated rock breaking by underwater pulsed shock waves[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 71-78. [10] 孙昊, 张帅, 韩伟, 等. 纳秒脉冲火花放电高效转化甲烷的实验研究[J]. 电工技术学报, 2019, 34(4): 880-888. Sun Hao, Zhang Shuai, Han Wei, et al.Experimental study on high-efficiency conversion of methane by nanosecond pulse spark discharge[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 880-888. [11] 吴世林, 杨庆, 邵涛. 低温等离子体表面改性电极材料对液体电介质电荷注入的影响[J]. 电工技术学报, 2019, 34(16): 3494-3503. Wu Shilin, Yang Qing, Shao Tao.Effect of low temperature plasma surface modified electrode materials on charge injection in liquid dielectric[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3494-3503. [12] 张开放, 张黎, 李宗蔚, 等. 高频正弦电应力下气-固绝缘沿面放电现象及特征分析[J]. 电工技术学报, 2019, 34(15): 3275-3284. Zhang Kaifang, Zhang Li, Li Zongwei, et al.Analysis of the surface discharge phenomena and characteri- stics of gas-solid insulation under high frequency sinusoidal electrical stress[J]. Transactions of China Electrotechnical Society, 2019, 34(15): 3275-3284. [13] Claverie A, Deroy J, Boustie M, et al.Experimental characterization of plasma formation and shockwave propagation induced by high power pulsed underwater electrical discharge[J]. Review of Scientific Instru- ments, 2014, 85(6): 625-636. [14] Martin E A.Experimental investigation of a high- energy density, high-pressure arc plasma[J]. Journal of Applied Physics, 1960, 31(2): 255-267. [15] Lu Xinpei, Pan Yuan, Liu Kefu, et al.Spark model of pulsed discharge in water[J]. Journal of Applied Physics, 2002, 91(1): 24-31. [16] Chung K J, Lee S G, Hwang Y S, et al.Modeling of pulsed spark discharge in water and its application to well cleaning[J]. Current Applied Physics, 2015, 15(9): 977-986. [17] Li Xingwen, Chao Youchuang, Wu Jian, et al. Study of the shock waves characteristics generated by underwater electrical wire explosion[J]. Journal of Applied Physics, 2015, 118(2): 023301.1-023301.8. [18] Otsuka M, Itoh S.Destruction of concrete block using underwater shock wave generated by electric discharge[C]//ASME Pressure Vessels and Piping Conference, Vancouver, BC, Canada, 2006, 47551: 189-194. [19] Smirnov A P, Zhekul V G, Poklonov S G.The influence of the hydrostatic pressure on the parameters of a pressure wave generated by an electric discharge in a fluid[J]. Surface Engineering and Applied Electrochemistry, 2014, 50(3): 233-237. [20] Katsuki S, Tanaka K, Fudamoto T, et al.Shock waves due to pulsed streamer discharges in water[J]. Japanese Journal of Applied Physics, 2006, 45(1R): 239. [21] Itoh S, Suzuki O, Nagano S, et al.Investigations of fundamental properties of underwater shock waves by high-speed photography[J]. Proceedings of SPIE-the International Society for Optical Engineering, 1995, 2513: 916-927. [22] Lisitsyn I V, Muraki T, Akiyama H.Characterization of a shock wave generated by a wire explosion in water[J]. Journal of the Acoustical Society of Japan, 2011,18(2): 89-91. [23] Han Yibo, Liu Yi, Lin Fuchang, et al.Experimental investigation of arc formation and bubble expansion initiated by pulse discharge in water[C]//2015 IEEE Pulsed Power Conference (PPC), Austin, TX, 2015: 1-5. [24] Liu Siwei, Liu Yi, Ren Yijia, et al.Characteristic analysis of plasma channel and shock wave in electrohydraulic pulsed discharge[J]. Physics of Plasmas, 2019, 26(9): 093509. [25] Braginskii S I.Theory of the development of a spark channel[J]. Soviet Physics JETP, 1958, 34(7): 1068-1074. [26] Sun Bing, Kunitomo S, Igarashi C.Characteristics of ultraviolet light and radicals formed by pulsed discharge in water[J]. Journal of Physics D: Applied Physics, 2006, 39(17): 3814. [27] Roberts R M, Cook J A, Rogers R L, et al.The energy partition of underwater sparks[J]. The Journal of the Acoustical Society of America, 1996, 99(6): 3465-3475. [28] Warne L K, Jorgenson R E, Lehr J M.Resistance of a water spark[R]. Sandia National Laboratories, 2005. [29] Liu Siwei, Liu Yi, Ren Yijia, et al.Influence of plasma channel impedance model on electrohydraulic shockwave simulation[J]. Physics of Plasmas, 2019, 26(2): 023522. [30] Liu Yi, Ren Yijia, Lin Fuchang, et al.Determination of the discharge coefficient in improved empirical impedance model of plasma channel for underwater spark discharge[J]. IEEE Transactions on Plasma Science, 2019, 48(1): 196-203. [31] Okun I Z.Plasma parameters in a pulsed discharge in a liquid[J]. Soviet Physics Technical Physics, 1971, 16: 227. [32] Mellen R H.An experimental study of the collapse of a spherical cavity in water[J]. The Journal of the Acoustical Society of America, 1956, 28(3): 447-454. [33] Chahine G L, Frederick G S, Lambrecht C J, et al.Spark-generated bubbles as laboratory-scale models of underwater explosions and their use for validation of simulation tools[C]//The 66th Shock and Vibration Symposium, Biloxi, MS, 1995, 2: 265-277. [34] Vokurka K.A model of spark and laser generated bubbles[J]. Czechoslovak Journal of Physics B, 1988, 38(1): 27-34. [35] Gidalevich E, Boxman R L, Goldsmith S.Hydro- dynamic effects in liquids subjected to pulsed low current arc discharges[J]. Journal of Physics D: Applied Physics, 2004, 37(10): 1509. [36] Shneerson G A.Estimation of the pressure in a “slow” spark discharge in a cylindrical water-filled chamber[J]. Technical Physics, 2003, 48(3): 374-375. |
|
|
|