|
|
Pressure Sensor Based on Direct Current Discharge Plasma |
Li Fan1,2,3, Luo Haiyun4, Du Juan1,2,3,5, Nie Chaoqun2,3,5 |
1. Innovation Academy for Light-duty Gas Turbine CAS Beijing 100190 China; 2. Key Laboratory of Advanced Energy and Power Institute of Engineering Thermophysics (IET) Chinese Academy of Sciences (CAS) Beijing 100190 China; 3. Advanced Gas Turbine Laboratory IET CAS Beijing 100190 China; 4. Gas Discharge and Plasma Laboratory Department of Electrical Engineering; Tsinghua University Beijing 100084 China; 5. University of Chinese Academy of Sciences Beijing 100190 China |
|
|
Abstract A type of pressure measuring method based on direct current glow discharge plasma was investigated and a plasma pressure sensor was designed in this paper. The static and dynamic calibrations between the discharge maintaining voltage and air pressure were experimentally tested and analyzed. The static calibration results showed that a spacing of 50μm is suitable for the pressure range from 0.4 to 2.0 atm. A spacing of 220μm is appropriate for the pressure range from 0.5 to 5.0 atm when the currents are selected between 3.0~5.0mA. Additionally, the dynamic calibration experiment was carried out on the shock tube. The results showed that the rise time of the plasma pressure sensor is 1μs, which is the same as the Endevco piezo-resistance transducer. By calculating the dynamic transfer function, the natural frequency of the plasma pressure sensor including its power supply and electronic circuit system is 146.6kHz, which has great potential for acquiring high-frequency flow information in the harsh high temperature and ultra-high-speed flow environment of the aircraft and ramjet engines.
|
Received: 08 December 2020
|
|
|
|
|
[1] Sieverding C H, Arts T, Dénos R, et al.Measurement techniques for unsteady flows in turbomachines[J]. Experiments in Fluids, 2000, 28(4): 285-321. [2] Kupferschmied P, Köppel P, Gizzi W, et al.Time-resolved flow measurements with fast-response aerodynamic probes in turbomachines[J]. Measurement Science and Technology, 2000, 11(7): 1036. [3] Ainsworth R W, Miller R J, Moss R W, et al.Unsteady pressure measurement[J]. Measurement Science and Technology, 2000, 11(7): 1055. [4] 李继超, 王偲臣, 林峰, 等. 一种容腔效应标定技术及其在高频响动态探针中的应用[J]. 航空动力学报, 2011, 26(12): 2749-2756. Li Jichao, Wang Sichen, Lin Feng, et al.A Technique to calibrate cavity effect in unsteady pressure probes with high frequency response[J]. Journal of Aerospace Power, 2011, 26(12): 2749-2756. [5] 马宏伟, 魏巍, 张良, 等. 欠频响压力探针测量压气机动态流场的结果分析[J]. 航空发动机, 2016, 42(2): 67-72. Ma Hongwei, Wei Wei, Zhang Liang, et al.Analysis of measured unsteady flow field using a quasi fast response pressure probe[J]. Areoengine, 2016, 42(2): 67-72. [6] Brouckaert J F, Mersinligil M, Pau M.A conceptual design study for a new high temperature fast response cooled total pressure probe[J]. Journal of Engineering for Gas Turbines and Power, 2009, 131(2): 021602. [7] Mersinligil M, Brouckaert J F, Desset J.First unsteady pressure measurements with a fast response cooled total pressure probe in high temperature gas turbine environments[C]//Turbo Expo: Power for Land, Sea, and Air, Glasgow, UK, 2010, DOI:10.1115/GT2010-23630. [8] Pechstedt R D.Fibre optic pressure and temperature sensor for applications in harsh environments[C]// Fifth European Workshop on Optical Fibre Sensors, International Society for Optics and Photonics, Kraków, Poland, 2013, DOI: 10.1117/12.2025725. [9] Mills D A, Alexander D, Subhash G, et al.Development of a sapphire optical pressure sensor for high-temperature applications[C]//Sensors for Extreme Harsh Environments, International Society for Optics and Photonics, Baltimore, Maryland, US, 2014, DOI:10.1117/12.2050598. [10] Riza N A, Sheikh M.Silicon carbide-based extreme environment hybrid design temperature sensor using optical pyrometry and laser interferometry[J]. IEEE Sensors Journal, 2009, 10(2): 219-224. [11] Matlis E, Corke T, Gogineni S. AC Plasma anemometer for hypersonic mach number experiments[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, US, 2005: https://doi.org/10.2514/6.2005-952. [12] 吴阳阳, 贾敏, 王蔚龙, 等. 新型介质阻挡放电等离子体激励器的放电与诱导流动特性实验[J]. 电工技术学报, 2016, 31(24): 45-53. Wu Yangyang, Jia Min, Wang Weilong, et al.Experimental research on the discharge and induced flow characteristics of a new dielectric barrier discharge plasma actuator[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 45-53. [13] 戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 32(20):1-9. Dai Dong, Ning Wenjun, Shao Tao.A review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9. [14] 高国强, 颜馨, 彭开晟, 等. 等离子体流动技术在列车减阻应用上的初步研究[J]. 电工技术学报, 2019, 34(4): 855-862. Gao Guoqiang, Yan Xin, Peng Kaisheng, et al.Primary research on drag reduction of train based on plasma flow[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 855-862. [15] Mettler R F.The anemometric application of an electrical glow discharge in transverse air streams[D]. California: California Institute of Technology, 1949. [16] Vrebalovich T.The development of direct and alternating current glow discharge anemometers for the study of turbulence phenomena in supersonic flow[D]. California: California Institute of Technology, 1954. [17] Matlis E, Corke T, Gogineni S. AC Plasma anemometer for hypersonic mach number experiments[C]//44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, US, 2006: https://doi.org/10.2514/6.2006-1245. [18] Marshall C, Matlis E, Corke T, et al.AC plasma anemometer—characteristics and design[J]. Measure-ment Science and Technology, 2015, 26(8): 085902. [19] 张耘玮, 王卫民, 贾敏, 等. 低风速下射频等离子体的辉光放电特性[J]. 高电压技术, 2016, 42(6):1962-1968. Zhang Yunwei, Wang Weimin, et al.Characteristics of radio frequency plasma glow discharge under low wind velocity[J]. High Voltage Engineering, 2016, 42(6):1962-1968. [20] Matlis E, Corke T, Camerson J, et al. High-Bandwidth plasma sensor suite for high-speed high-enthalpy measurements[C]//46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, US, 2008, https://doi.org/10.2514/6.2008-243. [21] Marshall C E.Plasma anemometer and pressure sensor design and characteristics[D]. South Bend: University of Notre Dame, 2016. [22] Zeyu H A O, Jian S, Yue H U A, et al. Frequency dependence of plasma characteristics at different pressures in cylindrical inductively coupled plasma source[J]. Plasma Science and Technology, 2019, 21(7): 075401. [23] 李帆, 焦俊凯, 罗海云, 等. 辉光放电等离子体对气压变化的响应特性[J]. 电工技术学报, 2016, 31(24): 54-61. Li Fan, Jiao Junkai, Luo Haiyun, et al.Response regularity between glow discharge plasma and static pressure change[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 54-61. [24] 孙志, 付琳清, 高鑫, 等. 基于原子力显微镜的微间隙空气放电研究[J]. 电工技术学报, 2018, 33(23): 5616-5624. Sun Zhi, Fu Linqing, Gao Xin, et al.Research of discharge in micro-gap based on atomic force microscope[J]. Transactions of China Electrotechnical Society, 2018, 33(23): 5616-5624. [25] 梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(4): 1339-1358. Mei Danhua, Fang Zhi, Shao Tao.Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(4): 1339-1358. [26] 董克亮, 孙岩洲, 刘绪光. 微间距气体放电的实验研究与分析[J]. 高压电器, 2019, 55(5): 29-34. Dong Keliang, Sun Yanzhou, Liu Xuguang.Experimental study and analysis of gas discharge with micro-gap[J]. High Voltage Apparatus, 2019, 55(5): 29-34. [27] 万静, 宁文军, 张雨晖, 等. 气隙宽度对大气压氦气介质阻挡放电多脉冲特性影响的仿真研究[J]. 电工技术学报, 2019, 34(4): 871-879. Wan Jing, Ning Wenjun, Zhang Yuhui, et al.Influence of gap width on the multipeak characteristics of atmospheric pressure helium dielectric barrier discharges—a numerical approach[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 871-879. |
|
|
|