|
|
Analysis of Energy Transmission Mode and Output Ripple Voltage of Interleaved Dual-Input Boost Converter |
Huang Jinfeng1,2, Han Mengqi1 |
1. School of Electrical Engineering Shaanxi University of Technology Hanzhong 723001 China; 2. Shaanxi Key Laboratory of Industrial Automation Hanzhong 723001 China |
|
|
Abstract Multi-input Boost converters have the advantages of small size, low cost, high gain, and flexible control methods compared with Boost converters operating in a traditional parallel mode. Therefore, they have broad application prospects in new energy joint distributed power generation systems. However, due to the existence of multi-input voltage and power switches, the power supply mode and output ripple voltage of the multi-input Boost converter are more complicated than those of traditional Boost converters. In order to provide correct theoretical guidance for the analysis and design of the multi-input Boost converter, this paper studies the power supply mode and output ripple voltage of dual-input Boost converter with interleaved control. It is found that there are three energy supply modes for inductor L1: complete inductor energy supply mode (CISM), incomplete inductor energy supply mode (IISM) and discontinuous conduction mode (DCM), and two energy supply modes for inductor L2: continuous conduction mode (CCM) and DCM. The critical inductance of each energy supply mode is derived, and the analytical expression of output ripple voltage of each energy supply mode is obtained. Accordingly, the parameter design method of dual-input Boost converter is given. The experimental results verify the correctness of the theoretical analysis.
|
Received: 24 July 2020
|
|
|
|
|
[1] Salehi S M, Dehghan S M, Hasanzadeh S.Interleaved- input series-output ultra-high voltage gain DC-DC converter[J]. IEEE Transactions on Power Electronics, 2019, 34(4): 3397-3406. [2] Zeng Yangbin, Li Hong, Wang Wencai, et al.Cost- effective clamping capacitor Boost converter with high voltage gain[J]. IET Power Electronics, 2020, 13(12): 1775-1786. [3] 刘昌咏, 赵晋斌, 毛玲, 等. 一种高降比DC-DC变换器[J]. 电工技术学报, 2019, 34(20): 4264-4271. Liu Changyong, Zhao Jinbin, Mao Ling, et al.A high step-down DC-DC converter[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4264-4271. [4] Santos Spencer Andrade A M, da Silva Martins M L. Isolated Boost converter based high step-up topo- logies for PV microinverter applications[J]. IET Power Electronics, 2020, 13(2): 1353-1363. [5] 皇金锋, 谢锋, 罗全明. 一种改进型低电压应力耦合电感高增益Boost变换器[J]. 电机与控制学报, 2020, 24(10): 69-76. Huang Jinfeng, Xie Feng, Luo Quanming.High step-up improved low voltage-stress Boost converter with coupled inductors[J]. Electric Machines and Control, 2020, 24(10): 69-76. [6] Maroti K, Padmanaban S, Bhaskar M S, et al.High gain three-state switching hybrid Boost converter for DC microgrid applications[J]. IET Power Electronics, 2019, 12(14): 3656-3667. [7] Heris P C, Saadatizadeh Z, Babaei E.A new two input-single output high voltage gain converter with ripple-free input currents and reduced voltage on semiconductors[J].IEEE Transactions on Power Elec- tronics, 2019, 34(8): 7693-7702. [8] Yang Fan, Ge Hongjuan, Yang jingfan, et al. A family of dual-Buck inverters with an extended low-voltage DC-input port for efficiency improvement based on dual-input pulsating voltage-source cells[J]. IEEE Transactions on Power Electronics, 2018, 33(4): 3115-3128. [9] Nayak G, Nath S.Decoupled voltage-mode control of coupled inductor single-input dual-output Buck con- verter[J]. IEEE Transactions on Industry Applications, 2020, 56(4): 4040-4050. [10] 杨帆, 葛红娟, 党润芸, 等. 一种双直流输入多电平双Buck逆变器[J]. 电工技术学报, 2018, 33(6): 1320-1327. Yang Fan, Ge Hongjuan, Dang Runyun, et al.A dual- DC-input multi-level dual-Buck inverter[J]. Transa- ctions of China Electrotechnical Society, 2018, 33(6): 1320-1327. [11] Irmak E, Güler N.Application of a Boost based multi-input single-output DC-DC converter[C]//IEEE International Conference on Renewable Energy Research and Applications, Shiraz Iran, 2017: 955-961. [12] Mohammadi S, Dezhbord M, Babalou M, et al.A new non-isolated multi-input DC-DC converter with high voltage gain and low average of normalized peak inverse voltage[C]//IEEE International Power Elec- tronics Drive Systems and Technologies Conference, Shiraz Iran, 2019: 515-520. [13] 罗全明, 邾玢鑫, 周雒维, 等. 一种多路输入高升压Boost变换器[J]. 中国电机工程学报, 2012, 32(3): 9-14. Luo Quanming, Zhu Binxin, Zhou Luowei, et al.High step-up Boost converter with multiple-input[J]. Pro- ceedings of the CSEE, 2012, 32(3): 9-14. [14] 周悦, 耿晓珑, 孙孝峰, 等. 基于开关电容的高增益双输入Boost变换器[J]. 太阳能学报, 2018, 39(3): 797-806. Zhou Yue, Geng Xiaolong, Sun Xiaofeng, et al.The double-input Boost converter with high gain based on switched capacitor[J]. Acta Energiae Solaris Sinica, 2018, 39(3): 797-806. [15] 赵玲玲, 吴云峰, 陈章勇, 等. 全占空比范围电容串接式交错并联Boost变换器均流策略研究[J]. 中国电机工程学报, 2020, 40(7): 2330-2338. Zhao Lingling, Wu Yunfeng, Chen Zhangyong, et al.Study on current sharing strategy about series capacitor interleaved Boost converter in full-duty range[J]. Proceedings of the CSEE, 2020, 40(7): 2330-2338. [16] Liu Shulin, Liu Jian, Mao Hong, et al.Analysis of operating modes and output voltage ripple of Boost DC-DC converters and its design considerations[J]. IEEE Transactions on Power Electronics, 2008, 23(4): 1813-1821. [17] 刘树林, 曹剑, 胡传义, 等. 正-反激组合变换器的能量传输模式及输出纹波电压分析[J]. 电工技术学报, 2019, 34(8): 1647-1656. Liu Shulin, Cao Jian, Hu Chuanyi, et al.Energy transmission modes and output ripple voltage of forward-flyback converter[J]. Transaction of China Electrotechnical Society, 2019, 34(8): 1647-1656. [18] 杨平, 许建平, 董政, 等. 二次型Boost变换器工作模式及输出电压纹波分析[J]. 电工技术学报, 2014, 29(8): 110-118. Yang Ping, Xu Jianping, Dong Zheng, et al.Output voltage ripple of quadratic Boost convertert[J]. Transa- ctions of China Electrotechnical Society, 2014, 29(8): 110-118. [19] 刘树林, 刘健. 开关变换器分析与设计[M]. 北京:机械工业出版社, 2010. [20] 曾绍桓, 周国华, 周述晗, 等. 电流型控制三态Boost变换器的小信号建模与负载瞬态特性分析[J].电工技术学报, 2019, 34(7): 1468-1477. Zeng Shaohuan, Zhou Guohua, Zhou Shuhan, et al.Small-signal modeling and load transient characteri- stic analysis of current mode controlled tri-state Boost converter[J]. Transaction of China Electrotechnical Society, 2019, 34(7): 1468-1477. |
|
|
|