|
|
Review on Physical Mechanisms and Applications of Pseudospark Discharge |
Yan Jiaqi, Shen Saikang, Sun Guoxiang, Ding Weidong |
State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiaotong University Xi'an 710049 China |
|
|
Abstract Pseudospark discharge is a special type of low-pressure gas discharge, which works at the left hand of Paschen's curve, ignites from the hollow cathode, and has a homogeneous discharge channel. It is widely used in the fields of pulsed power technology and plasma driving. This paper reviews the researches on physical mechanisms and typical applications of pseudospark discharge in recent years. Firstly, mechanisms and characteristics of sub-phases of pseudospark discharge are analyzed, which are predischarge, hollow cathode discharge, superdense glow discharge, and vacuum arc discharge; secondly, remained problems in pseudospark discharge are analyzed, such as current quenching and impedance fluctuations; thirdly, typical applications of pseudospark discharge are introduced, including pseudospark switch, electron beam sources, extreme ultraviolet light sources, etc., with emphasis on the key parameters and technical characteristics of these devices. Finally, the future research topics are discussed.
|
Received: 14 March 2020
|
|
|
|
|
[1] Christiansen J, Schultheiss C.Production of high current particle beams by low pressure spark discharges[J]. Zeitschrift fur Physik A (Atoms and Nuclei), 1979, 290(1): 35-41. [2] Frank K, Dewald E, Bickes C, et al.Scientific and technological progress of pseudospark devices[J]. IEEE Transactions on Plasma Science, 1999, 27(4): 1008-1020. [3] Korolev Y D, Koval N N.Low-pressure discharges with hollow cathode and hollow anode and their applications[J]. Journal of Physics D: Applied Physics, 2018, 51(32): 323001. [4] Kaganovich I D, Raitses Y, Sydorenko D, et al.Kinetic effects in a Hall thruster discharge[J]. Physics of Plasmas, 2007, 14(5): 057104. [5] 邱毓昌. 伪火花开关的发展与应用[J]. 电工电能新技术, 1997(4):11-14, 20. Qiu Yuchang.Development and applications of pseudospark switches[J]. Advanced Technology of Electrical Engineering and Energy, 1997(4): 11-14, 20. [6] Stetter M, Felsner P, Christiansen J, et al.Investigation of the different discharge mechanisms in pseudospark discharges[J]. IEEE Transactions on Plasma Science, 1995, 23(3): 283-293. [7] Urban J, Bickes C, Frank K, et al.The borehole phase of the pseudospark discharge-a transition between hollow cathode and high current phase[C]//18th International Symposium on Discharges and Electrical Insulation in Vacuum, IEEE, Eindhoven, Netherlands, 1998, 1: 402-405. [8] Korolev Y D, Frants O B, Landl N V, et al.High-current stages in a low-pressure glow discharge with hollow cathode[J]. IEEE Transactions on Plasma Science, 2013, 41(8): 2087-2096. [9] Anders A, Anders S, Gundersen M A, et al.Self-sustained self-sputtering: a possible mechanism for the superdense glow phase of a pseudospark[J]. IEEE Transactions on Plasma Science, 1995, 23(3): 275-282. [10] Korolev Y D, Frank K.Discharge formation processes and glow-to-arc transition in pseudospark switch[J]. IEEE Transactions on Plasma Science, 1999, 27(5): 1525-1537. [11] Hartmann W, Gundersen M A.Origin of anomalous emission in superdense glow discharge[J]. Physical Review Letters, 1988, 60(23): 2371. [12] Kozyrev A V, Korolev Y D, Rabotkin V G, et al.Processes in the prebreakdown stage of a low-pressure discharge and the mechanism of discharge initiation in pseudospark switches[J]. Journal of Applied Physics, 1993, 74(9): 5366-5371. [13] Pitchford L C, Ouadoudi N, Boeuf J P, et al.Triggered breakdown in low-pressure hollow cathode (pseudospark) discharges[J]. Journal of Applied Physics, 1995, 78(1): 77-89. [14] Xu L, Khrabrov A V, Kaganovich I D, et al.Investigation of the Paschen curve for helium in the 100-1000kV range[J]. Physics of Plasmas, 2017, 24(9): 093511. [15] Pak H, Kushner M J.Breakdown characteristics in nonplanar geometries and hollow cathode pseudospark switches[J]. Journal of Applied Physics, 1992, 71(1):94. [16] Boeuf J P, Pitchford L C.Pseudospark discharges via computer simulation[J]. IEEE Transactions on Plasma Science, 1991, 19(2): 286-296. [17] Cetiner S O, Stoltz P, Messmer P, et al.Dependence of electron peak current on hollow cathode dimensions and seed electron energy in a pseudospark discharge[J]. Journal of Applied Physics, 2008, 103(2): 023304. [18] Huo Weijie, Hu Jing, Cao Xiaotong, et al.Theoretical model and experimental investigation of optically triggered hollow cathode discharge formation[J]. Plasma Science and Technology, 2020, 23(1): 015402. [19] Cross A W, Ronald K, Pal U N.PIC simulation of pseudospark discharge-based plasma cathode electron source for the generation of high current density and energetic electron beam[J]. IEEE Transactions on Electron Devices, 2020, 67(4): 1793-1796. [20] 闫家启, 孙国祥, 申赛康, 等.伪火花放电初始发展过程的仿真研究[J/OL].高电压技术:1-11[2021-01-26].https://doi.org/10.13336/j.1003-6520.hve.20200218. Yan Jiaqi, Sun Guoxiang, Shen Saikang, et al. Simulation investigations on initial processes of pseudospark discharge[J/OL]. High Voltage Engineering,1-11[2021-01-26].https://doi.org/10.13336/j.1003-6520.hve.20200218. [21] Mesyats G A, Puchkarev V F.On mechanism of emission in pseudospark[C]//15th International Symposium on Discharge and Electrical Insulation in Vacuum, Darmstadt, Germany, 1992: 488-489. [22] Mesyats G A.Ecton mechanism of the vacuum arc cathode spot[J]. IEEE Transactions on Plasma Science, 1995, 23(6): 879-883. [23] Anders A, Anders S, Gundersen M A.Electron emission from pseudospark cathodes[J]. Journal of Applied Physics, 1994, 76(3):1494. [24] Puchkarev V F.Fast processes on cathode surface resulting in pseudospark discharge[J]. IEEE Transactions on Plasma Science, 1993, 21(6):0-730. [25] Hartmann W, Kirkman G F, Gundersen M A.Current quenching in the pseudospark[J]. Applied Physics Letters, 1991, 58(6): 574-576. [26] Korolev Y D, Frants O B, Geyman V G, et al.Mechanism of the current quenching phenomenon in pseudospark discharge[C]//20thIEEE International Symposium on Discharges and Electrical Insulation in Vacuum, Tours, France, 2002: 491-494. [27] Felsner P, Christiansen J, Frank K, et al.Correlation of current quenching and occurrence of metal vapor in a pseudospark discharge[J]. IEEE Transactions on Plasma Science, 1995, 23(3): 305-308. [28] Dwivedi H K, Urban J, Frank K.Role of trigger to avoid current quenching in pseudospark switch[J]. IEEE Transactions on Plasma Science, 2002, 30(3): 1371-1375. [29] Urban J, Frank K.Minimization of impedance fluctuations in cold-cathode pseudospark switches (PSS)[J]. IEEE Transactions on Plasma Science, 2004, 32(1): 203-207. [30] Taguchi H, Sato T, Itagaki M, et al.Effects of electrode geometry on breakdown voltage of a single-gap pseudospark discharge[J]. Japanese Journal of Applied Physics, 1998, 37(1R): 303. [31] Luo Chengmu, Wang Xinxin, Zhao Huiliang, et al.Effect of the cavity structure on the discharge features of pseudospark switches[J]. IEEE Transactions on Plasma Science, 2002, 30(5): 1872-1875. [32] Zhang Jia, Zhao Junping, Zhang Qiaogen.Fast electron ionization effect in multigap pseudospark discharge under nanosecond pulsed voltages[J]. IEEE Transactions on Plasma Science, 2015, 43(11): 3921-3924. [33] Li Longjie, Zhao Zheng, Liu Yuhao, et al.Repetitive gas-discharge closing switches for pulsed power applications[J]. IEEE Transactions on Plasma Science, 2019, 47(9): 4237-4249. [34] Bauville G, Bendiab F, Delmas A.Pseudospark discharge in long time current pulse: electrical characterization and recovery phenomena[J]. IEEE Transactions on Plasma Science, 1995, 23(3): 358-361. [35] Rosier O, Apetz R, Bergmann K, et al.Frequency scaling in a hollow-cathode-triggered pinch plasma as radiation source in the extreme ultraviolet[J]. IEEE Transactions on Plasma Science, 2004, 32(1): 240-246. [36] Korolev Y D, Frants O B, Geyman V G, et al.Investigation of the electric strength recovery process in the pseudospark switch with a high pulse repetition rate[C]// 2006 International Symposium on Discharges and Electrical Insulation in Vacuum, IEEE, Matsue, Japan, 2006, 1: 25-28. [37] Heo H, Park S S, Nam S H.Experiments with a radial multichannel pseudospark switch for extremely high Coulomb transfer[J]. IEEE Transactions on Plasma Science, 2004, 32(1): 196-202. [38] Lins G, Hartmann W.The densities of neutral and ionized metal vapor in a recovering pseudospark switch[J]. Journal of Physics D: Applied Physics, 1995, 28(2): 319. [39] Weisser W, Frank K, Schroder G.Silicon carbide as electrode material of a pseudospark switch[J]. IEEE Transactions on Plasma Science, 2001, 29(3): 524-528. [40] Iberler M, Bischoff R, Frank K, et al.Fundamental investigation in two flashover-based trigger methods for low-pressure gas discharge switches[J]. IEEE Transactions on Plasma Science, 2004, 32(1): 208-214. [41] 胡上茂, 姚学玲, 陈景亮. 沿面闪络触发真空开关初始等离子体特性实验[J]. 电工技术学报, 2012, 27(9): 271-276. Hu Shangmao, Yao Xueling, Chen Jingliang.An experimental study on initial plasma characteristics of surface flashover triggered vacuum switch[J]. Transactions of China Electrotechnical Society, 2012, 27(9): 271-276. [42] 秦风, 常安碧, 丁恩燕, 等. 辉光放电触发赝火花开关的时延及抖动特性[J]. 强激光与粒子束, 2011, 23(5): 1402-1406. Qin Feng, Chang Anbi, Ding Enyan, et al.Delay and jitter of pseudospark switch triggered by glow discharge[J]. High Power Laser and Particle Beams, 2011, 23(5): 1402-1406. [43] Korolev Y D, Landl N V, Geyman V G, et al.Methods of triggering for the cold-cathode thyratrons with a trigger system based on an auxiliary glow discharge[J]. AIP Advances, 2019, 9(8): 085326. [44] Korolev Y D, Landl N V, Frants O B, et al.Low-pressure discharge in a trigger unit of pseudospark switch[J]. Physics of Plasmas, 2020, 27(7): 073510. [45] Stroh J, Hartmann W.The characteristics of pulsed hollow cathode discharges used for pseudospark switch triggering[J]. IEEE Transactions on Plasma Science, 1995, 23(3): 335-340. [46] Legentil M, Postel C, Thomaz J C, et al.Corona-plasma triggered pseudospark discharges[J]. IEEE Transactions on Plasma Science, 1995, 23(3): 330-334. [47] Krokhmal A, Gleizer J Z, Krasik Y E, et al.Low-pressure, high-current hollow cathode with a ferroelectric plasma source[J]. Applied Physics Letters, 2002, 81(23): 4341-4343. [48] Yan Jiaqi, Shen Saikang, Wang Yanan, et al.A novel trigger for pseudospark switch with high repetition rate, low jitter, and compact structure[J]. Review Science. Instrument, 2018, 89(6): 065102. [49] Yan Jiaqi, Shen Saikang, Ding Weidong.High-power nanosecond pulse generators with improved reliability by adopting auxiliary triggering topology[J]. IEEE Transactions on Power Electronics, 2019, 35(2): 1353-1364. [50] Frank K, Korolev Y D, Kuzmichev A I.Mechanism for initiation of pseudospark discharge by ions ejected from the anode side[J]. IEEE Transactions on Plasma Science, 2002, 30(1): 357-362. [51] Kirkman G F, Gundersen M A.Low pressure, light initiated, glow discharge switch for high power applications[J]. Applied Physics Letters, 1986, 49(9): 494-495. [52] Sozer E B, Gundersen M A, Jiang Chunqi.Magnesium-based photocathodes for back-lighted Thyratrons[J]. IEEE Transactions on Plasma Science, 2012, 40(6): 1753-1758. [53] Jiang Chunqi, Sozer E B, Umstattd R J, et al.Photocathodes for compact optical triggering of back-lighted thyratrons[C]//IEEE International Power Modulators and High-Voltage Conference, Las Vegas, NV, USA, 2008: 477-479. [54] Chen Hao, Jiang Chunqi, Kuthi A, et al.An ultra-compact back-lighted thyratron for nanosecond switching applications[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(4): 1043-1047. [55] Urban A, Frank K.Cold cathode thyratron development for pulsed power applications[C]//Conference Record of the Twenty-Fifth International Power Modulator Symposium, Hollywood, CA, USA, 2002: 217-220. [56] Boehkov V D, Korolev Y D, Shemyakin I A.High-current ceramic-metal sealed-off pseudospark switches (designs and applications)[C]//Proceedings of 17th International Symposium on Discharges and Electrical Insulation in Vacuum, Berkeley, CA, USA, 1996, 2: 977-980. [57] Bochkov V D, Bochkov D V, Dyagilev V M, et al.Development of high-power gas discharge and electronic vacuum devices for pulsed electrophysics. Current status and prospects[C]//AIP Conference Proceedings, AIP Publishing, 2016, 1771(1): 070005. [58] 谢建民,陈景亮,邱毓昌, 等. 伪火花放电开关的实验研究[J]. 西安交通大学学报, 2002, 36(12):1227-1231. Xie Jianmin, Chen Jingliang, Qiu Yuchang, et al, Experimental investigation of the pseudospark switch[J]. Journal of Xi’an Jiaotong University, 2002, 36(12):1227-1231 [59] 赵会良, 王幽林. 空腔悬浮极对二极赝火花开关耐受电压的影响[J]. 高电压技术, 1998, 24(1): 25-27. Zhao Huiliang, Wang Youlin.The effect of hollow intermediate electrode on the withstand voltage of two stage pss[J]. High Voltage Engineering, 1998, 24(1): 25-27. [60] 张明, 周亮, 栾小燕, 等. 伪火花开关大电容脉冲放电的测试与研究[J]. 真空电子技术, 2017, 4: 30-34. Zhang Ming, Zhou Liang, Luan Xiaoyan, et al.Measurement and research of large capacity pulse discharge of pseudospark switches[J]. Vacuum Electronics Technology, 2017, 4: 30-34. [61] 周亮, 张明, 孙承革. 激光触发伪火花开关的研究[J].强激光与粒子束, 2020, 32(2): 100-105. Zhou Liang, Zhang Ming, Sun Chengge.The preliminary study of laser-triggered pseudospark switch[J]. High Power Laser and Particle Beams, 2011, 32(2): 100-105. [62] 闫家启, 申赛康, 孙国祥, 等.双间隙伪火花开关的触发及导通特性[J/OL].高电压技术:1-12[2021-01-26].https://doi.org/10.13336/j.1003-6520.hve.20200528025. Yan Jiaqi, Shen Saikang, Sun Guoxiang, et al. Investigations on characteristics of triggering and conduction of a double-gap pseudospark switch[J/OL]. High Voltage Engineering,1-12[2021-01-26].https://doi.org/10.13336/j.1003-6520.hve.20200528025. [63] Dewald E, Frank K, Hoffmann D H H, et al. Pulsed intense electron beams generated in transient hollow cathode discharges: Fundamentals and applications[J]. IEEE Transactions on Plasma Science, 1997, 25(2): 272-278. [64] Cross A W, Yin H, He W, et al.Generation and application of pseudospark-sourced electron beams[J]. Journal of Physics D: Applied Physics, 2007, 40(7): 1953. [65] Zhao J, Yin H, Zhang L, et al.Advanced post -acceleration methodology for pseudospark-sourced electron beam[J]. Physics of Plasmas, 2017, 24(2): 023105. [66] 刘志坚, 江兴流, 乐小云, 等. 赝火花脉冲电子束传输中束斑分析[J]. 物理学报, 2005, 54(9): 4229-4235. Liu Zhijian, Jiang Xingliu, Le Xiaoyun, et al.Analysis of pseudospark pulsed beam shape in transmission[J]. Acta Physics Sinica, 2005, 54(9): 4229-4235. [67] Zhao Juping, Yin H, Zhang Liang, et al.Influence of the electrode gap separation on the pseudospark-sourced electron beam generation[J]. Physics of Plasmas, 2016, 23(7): 073116. [68] Pal U N, Lamba R P, Meena B L, et al.A Multigap Multiaperture Pseudospark Switch and Its Performance Analysis for High-Voltage Applications[J]. IEEE Transactions on Electron Devices, 2020, 67(12): 5600-5604. [69] Nistor M, Charles P, Ganciu M, et al.Electron energy distribution function in a transient open-ended hollow cathode discharge[J]. Plasma Sources Science and Technology, 2002, 11(2): 183. [70] Modreanu G, Mandache N B, Pointu A M, et al.Time-resolved measurement of the energy distribution function of an electron beam created by a transient hollow cathode discharge[J]. Journal of Physics D: Applied Physics, 2000, 33(7): 819. [71] Huo Weijie, Hu Jing, Qin Ling, et al.Variable beam entrance Faraday cup system for pulsed electron beam current profile characterization[J]. Review of Scientific Instruments, 2020, 91(11): 113303. [72] Fu Yulei, Hu Jing, Zhao Wansheng, et al.Microstructure modification and corrosion improvement of AISI1045 steel induced by pseudospark electron beam treatment[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2020, 469: 10-18. [73] Yin H, Cross A W, Phelps A D R, et al. Cherenkov interaction and post-acceleration experiments of high brightness electron beams from a pseudospark discharge[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 528(1-2): 378-381. [74] Yin H, Cross A W, He W, et al.Millimeter wave generation from a pseudospark-sourced electron beam[J]. Physics of Plasmas, 2009, 16(6): 063105. [75] Qu Di, Bleiner D.Extreme ultraviolet plasma spectroscopy of a pseudospark XUV source[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(9): 2011-2022. [76] Bergmann K, Schriever G, Rosier O, et al.Highly repetitive, extreme-ultraviolet radiation source based on a gas-discharge plasma[J]. Applied Optics, 1999, 38(25): 5413-5417. [77] Krücken T, Bergmann K, Juschkin L, et al.Fundamentals and limits for the EUV emission of pinch plasma sources for EUV lithography[J]. Journal of Physics D: Applied Physics, 2004, 37(23): 3213. [78] Bergmann K, Küpper F, Benk M.Soft x-ray emission from a pulsed gas discharge in a pseudospark-like electrode geometry[J]. Journal of Applied Physics, 2008, 103(12): 123304. [79] Bergmann K, Vieker J, Von Wezyk A.Investigations on the emission in the extreme ultraviolet of a pseudospark based discharge light source[J]. Journal of Applied Physics, 2016, 120(14): 143302. [80] Landl N V, Korolev Y D, Frants O B, et al.Features of magnetic compression model as applied to EUV source based on a pseudospark discharge[C]//25th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV), Tomsk, Russia, 2012: 584-587. [81] Jiang Chunqi, Kuthi A, Gundersen M A, et al.Pseudospark electron beam as an excitation source for extreme ultraviolet generation[J]. Applied Physics Letters, 2005, 87(13): 131501. |
|
|
|