|
|
A Fast Risk Assessment Method with Consideration of Forecasting Errors of Multiple Wind Farms |
Zhang Pei, Tian Jiaxin, Xie Hua |
School of Electrical Engineering Beijing Jiaotong University Beijing 100044 China |
|
|
Abstract As more and more wind farms are integrated in to power system, risk assessment based on enumeration method may take too much time to meet the computation time requirement of system operation because the enumeration method has combination explosion problem. With consideration of forecasting errors of multiple wind farms, this paper proposes a fast computation method for risk assessment. The paper clusters the input samples based on K-means. Cumulant and Gram-Charlier series expansion theory are applied to compute the cumulative distribution of node voltage and branch flow. According to the cumulative distribution, the probability of over-limit can be computed. Risk indices are computed by the product of the over limit probability and the impact. Case study on a practical power system demonstrates that the proposed method meets system operation's accuracy and time requirements.
|
Received: 07 February 2020
|
|
|
|
|
[1] 芦晶晶, 杜松怀, 韦永忠, 等. 基于三点估计法的新能源电网快速风险评估[J]. 高电压技术, 2017, 43(1): 172-180. Lu Jingjing, Du Songhuai, Wei Yongzhong, et al.Three point estimation method for rapid risk evaluation of transmission system with new energy[J]. High Voltage Engineering, 2017, 43(1): 172-180. [2] Li Xue, Zhang Xiong, Wu Lei, et al.Transmission line overload risk assessment for power systems with wind and load-power generation correlation[J]. IEEE Transactions on Smart Grid, 2015, 6(3): 1233-1242. [3] Pierluigi C, Guido C, Pietro V.Point estimate schemes for probabilistic three-phase load flow[J]. Electric Power System Research, 2009, 80(2): 168-175. [4] 王龙宇, 王丙东, 蔡蕾, 等. 考虑分布式电源影响的电网运行安全风险评估方法概述[J]. 电气工程学报, 2016, 11(12): 30-36. Wang Longyu, Wang Bingdong, Cai Lei, et al.A review on risk based assessment method for power system operation considering the influence of distributed generation[J]. Journal of Electrical Engineering, 2016, 11(12): 30-36. [5] 马光, 张伊宁, 陈哲, 等. 含大规模风电的交直流混联系统风险评估方法[J]. 电网技术, 2019, 43(9): 3241-3252. Ma Guang, Zhang Yinning, Chen Zhe, et al.Risk assessment method for hybrid AC/DC system with large-scale wind power integration[J]. Power System Technology, 2019, 43(9): 3241-3252. [6] 黎静华, 左俊军, 汪赛. 大规模风电并网电力系统运行风险评估与分析[J]. 电网技术, 2016, 40(11): 3503-3513. Li Jinghua, Zuo Junjun, Wang Sai.Analysis and assessment of operation risk for power system with large-scale wind power integration[J]. Power System Technology, 2016, 40(11): 3503-3513. [7] 魏勇, 李浩然, 范雪峰, 等. 计及日照强度时间周期特征的光伏并网系统风险评估方法[J]. 电网技术, 2018, 42(8): 2562-2569. Wei Yong, Li Haoran, Fan Xuefeng, et al.Risk assessment method of PV integrated power system considering time periodic characteristics of solar irradiance[J]. Power System Technology, 2018, 42(8): 2562-2569. [8] 丁冠华. 含风电场的电力系统运行风险评估[D]. 北京: 华北电力大学, 2015. [9] 向磊. 含风电场发输电系统运行规划的风险评估[D]. 长沙: 长沙理工大学, 2013. [10] 陈小青. 基于蒙特卡洛模拟的电网调度运行风险评估研究[D]. 长沙: 湖南大学, 2013. [11] 熊飞, 董蓓蓓, 李更丰. 含间歇性分布式电源的配电系统风险评估[J]. 电力系统自动化, 2016, 40(12): 62-67. Xiong Fei, Dong Beibei, Li Gengfeng.Risk evaluation of distribution system with stochastic distributed generator[J]. Automation of Electric Power Systems, 2016, 40(12): 62-67. [12] 段瑶, 张步涵, 刘怡芳. 基于快速随机潮流的电力系统安全风险评估[J]. 中国电机工程学报, 2014, 34(22): 3784-3790. Duan Yao, Zhang Buhan, Liu Yifang.Security risk assessment of power system based on fast probabilistic power flow[J]. Proceedings of the CSEE, 2014, 34(22): 3784-3790. [13] 朱星阳, 黄宇峰, 张建华, 等. 基于随机潮流的含风电电力系统静态安全评估[J]. 电力系统自动化, 2014, 38(20): 46-53. Zhu Xingyang, Huang Yufeng, Zhang Jianhua, et al.Optimal preventive maintenance cycle based on reliability cost-benefit analysis[J]. Automation of Electric Power Systems, 2014, 38(20): 46-53. [14] Allan R N, Silva A M L D, Burchett R C. Evaluation methods and accuracy in probabilistic load flow solutions[J]. IEEE Transactions on Power Apparatus and Systems, 1981, 100(5): 2539-2546. [15] 张立波, 程浩忠, 曾平良, 等. 基于Nataf逆变换的概率潮流三点估计法[J]. 电工技术学报, 2016, 31(6): 187-194. Zhang Libo, Cheng Haozhong, Zeng Pingliang, et al.A three-point estimate method for solving probabilistic load flow based on inverse Nataf transformation[J]. Transactions of China Electrote-chnical Society, 2016, 31(6): 187-194. [16] 任洲洋, 颜伟, 项波, 等. 考虑光伏和负荷相关性的概率潮流计算[J]. 电工技术学报, 2015, 30(24): 181-187. Ren Zhouyang, Yan Wei, Xiang Bo, et al.Probabilistic power flow analysis incorporating the correlations between PV power outputs and loads[J]. Transactions of China Electrotechnical Society, 2015, 30(24): 181-187. [17] 唐飞, 刘扬, 施浩波, 等. 一种考虑风电场并网的大电网快速主动解列策略[J]. 电工技术学报, 2019, 34(10): 2092-2101. Tang Fei, Liu Yang, Shi Haobo, et al.A fast active islanding strategy for large power grid considering wind farm integration[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2092-2101. [18] 王思莹, 常俊, 李永, 等. 考虑负载率均衡及风险成本的变电站规划[J]. 电气技术, 2017, 18(10): 52-56. Wang Siying, Chang Jun, Li Yong, et al.Distribution substation planning considering balance of load rate and risk cost[J]. Electrical Engineering, 2017, 18(10): 52-56. [19] 朱星阳, 刘文霞, 张建华, 等. 电力系统随机潮流及其安全评估应用研究综述[J]. 电工技术学报, 2013, 28(10): 257-270. Zhu Xingyang,Liu Wenxia,Zhang Jianhua, et al.Reviews on power system stochastic load flow and its applications in safety evaluation[J]. Transactions of China Electrotechnical Society, 2013, 28(10): 257-270. [20] Zhang Pei, Lee S T.Probabilistic load flow computation using the method of combined cumulants and gram-Charlier expansion[J]. IEEE Transactions on Power Systems, 2004, 19(1): 676-682. [21] 邓晓洋. 计及大规模风电的电力系统及综合能源系统概率能流研究[D]. 北京: 北京交通大学, 2018. [22] 董雷, 杨以涵, 张传成, 等. 综合考虑网络结构不确定性的概率潮流计算方法[J]. 电工技术学报, 2012, 27(1): 210-216. Dong Lei, Yang Yihan, Zhang Chuancheng, et al.Probabilistic load flow considering network configuration uncertainties[J]. Transactions of China Electrotechnical Society, 2012, 27(1): 210-216. [23] 李智诚. 交直流柔性互联电网最优潮流与自愈重构研究[D]. 北京: 北京交通大学, 2017. [24] 马燕峰, 刘佳, 闫纪源. 基于随机响应面法的含风电电力系统小扰动稳定性分析[J]. 电工技术学报, 2017, 32(6): 49-57. Ma Yanfeng, Liu Jia, Yan Jiyuan.Small disturbance stability analysis of power system containing wind power based on stochastic response surface method[J]. Transactions of China Electrotechnical Society, 2017, 32(6): 49-57. |
|
|
|