|
|
Analysis and Design of an Intrinsically Safe Buck-Boost Converter on Considering of the Filter Capacitor with Equivalent Series Resistance |
Huang Jinfeng1, Li Linhong1, Ren Shuxin1, Liu Shulin2 |
1. School of Electrical Engineering Shaanxi University of Technology Hanzhong 723001 China; 2. School of Electrical and Control Engineering Xi'an University of Science & Technology Xi'an 710054 China; |
|
|
Abstract The Buck-Boost converter used in coal mine, petrochemical and other dangerous environment should not only meet the requirements of intrinsic safety, but also meet the requirements of electrical performance indicators such as ripple voltage. The parameter design basis of the existing intrinsic safety switching converter is the ideal ripple voltage expression. However, due to the influence of parasitic parameters such as equivalent series resistance (ESR), the capacitor designed according to the ideal formula cannot meet the ripple voltage requirements, and a margin of 2~4 times is usually selected. This will increase the risk of explosion when the converter is short-circuited. Capacitor ESR not only causes the ripple voltage waveform distortion, but also has an important impact on the ripple voltage. In order to better guide the parameter design of intrinsically safe buck boost converter, the mechanism of ripple voltage distortion caused by capacitor ESR is analyzed, and the accurate mathematical model of ripple voltage and the peak inductance of Buck-Boost converter considering capacitor ESR are established. Then, the parameter design method of intrinsically safe Buck-Boost converter is proposed in the dynamic range of input voltage, load resistance and capacitance ESR. The experimental results show that the ripple voltage and output intrinsic safety requirements of Buck- Boost converter can be satisfied by selecting a capacitor with the margin of 1.2 times, which can effectively improve the intrinsic safety performance of the converter.
|
Received: 24 March 2020
|
|
|
|
|
[1] Ripamonti, Giacomo, Saggini, et al. A novel inter- leaved tri-state Boost converter with lower ripple and improved dynamic response[J]. IEEE Transactions on Power Electronics, 2019, 34(1): 28-32. [2] Jonathan C, Jesus E, Pedro M, et al.A dual-edge pulsewidth modulator for fast dynamic response DC-DC converters[J]. IEEE Transactions on Industry Applications, 2019, 55(3): 2813-2822. [3] Li Jing, Liu Jinjun.A novel Buck-Boost converter with low electric stress on components[J]. IEEE Transactions on Industrial Electronics, 2019, 66(4): 2703-2713. [4] Julio C, Jesus E, Jonathan C, et al.Quadratic Buck- Boost converter with positive output voltage and minimum ripple point design[J]. IET Power Elec- tronics, 2018, 11(7): 1306-1313. [5] Vishwanatha S, Yogesh V H.Systematic circuit design and analysis of a non-ideal DC-DC pulse width modulation Boost converter[J]. IET Circuits Devices & Systems, 2018, 12(2): 144-156. [6] Ren Lei, Gong Chunying, Zhao Yao.An online ESR estimation method for output capacitor of Boost converter[J]. IEEE Transactions on Power Electronics, 2019, 34(10): 10153-10165. [7] 杨玉岗, 祁鳞, 吴建鸿. 三相交错并联磁集成Boost变换器的内部本质安全特性[J]. 电工技术学报, 2014, 29(4): 54-62. Yang Yugang, Qi Lin, Wu Jianhong.Analysis of inner-intrinsic safety for three-phase interleaving magnetic integrated Boost converter[J]. Transactions of China Electrotechnical Society, 2014, 29(4): 54-62. [8] 程红, 李鹤群, 王聪. 准Z源Buck开关变换器输出短路火花发电模型研究[J]. 煤炭学报, 2012, 37(增刊2): 504-510. Cheng Hong, Li Hequn, Wang Cong.Research on the output short circuit spark discharge mathematical model of quasi-Z-source Buck converter[J]. Journal of China Coal Society, 2012, 37(S2): 504-510. [9] 于月森, 戚文艳, 伍小杰. 软火花电路的本质安全特性及优化分析[J]. 煤炭学报, 2014, 39(10): 2134-2140. Yu Yuesen, Qi Wenyan, Wu Xiaojie.Intrinsically safe characteristics and optimization analysis of soft-spark circuit[J]. Journal of China Coal Society, 2014, 39(10): 2134-2140. [10] 刘树林, 刘健, 钟久明. Buck-Boost变换器的能量传输模式及输出纹波电压分析[J]. 电子学报, 2007, 35(8): 838-848. Liu Shulin, Liu Jian, Zhong Jiuming, et al.Energy transmission modes and output ripple voltage of Buck-Boost converters[J]. ACTA Electronica Sinica, 2007, 35(8): 838-848. [11] 刘树林, 刘健, 钟久明. 输出本质安全型Buck- Boost DC-DC变换器的分析与设计[J]. 中国电机工程学报, 2008, 28(3): 60-65. Liu Shulin, Liu Jian, Zhong Jiuming.Analysis and design of output intrinsically safe Buck-Boost DC-DC converter[J]. Proceedings of the CSEE, 2008, 28(3): 60-65. [12] 刘树林, 马一博, 文晓明, 等. 输出本安Buck- Boost变换器的最危险输出短路放电工况研究[J]. 电工技术学报, 2015, 30(14): 253-260. Liu Shulin, Ma Yibo, Wen Xiaoming, et al.Study on the most dangerous output short circuit discharge conditions of output intrinsically safe Buck-Boost converter[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 253-260. [13] 刘树林, 汪子为, 钟明航, 等. 基于Matlab的Boost变换器输出本安性能评价系统[J]. 煤炭学报, 2017, 42(增刊1): 282-287. Liu Shulin, Wang Ziwei, Zhong Minghang, et al.Output intrinsic safety performance evaluation system of Boost converter based on Matlab[J]. Journal of China Coal Society, 2017, 42(S1): 282-287. [14] 杨玉岗, 祁鳞, 李龙华. 交错并联磁集成Buck变换器本质安全性输出纹波电压的分析[J]. 电工技术学报, 2014, 29(6): 181-188. Yang Yugang, Qi Lin, Li Longhua.Analysis of intrinsic safety output ripple voltage of interleaved parallel magnetically integrated Buck converter[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 181-188. [15] 孟庆海, 王进己. 本质安全电感电路电弧放电时间双正态分布[J]. 电工技术学报, 2017, 32(2): 119-124. Meng Qinghai, Wang Jinji.Double normal distri- bution of arc discharge time in intrinsically safe inductive circuits[J]. Transactions of China Electro- technical Society, 2017, 32(2): 119-124. [16] 赵永秀, 刘树林, 王瑶, 等. 安全火花试验电极热场致发射模型和温度效应的数值模拟研究[J]. 电工技术学报, 2019, 34(20): 4179-4187. Zhao Yongxiu, Liu Shulin, Wang Yao, et al.Study on the model of thermal field emission and numerical simulation of temperature effect of safety spark test electrode[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4179-4187. [17] 姚凯, 唐伟杰, 毕晓鹏, 等. Boost PFC变换器直流母线电容等效串联电阻和容值的一种在线监测方法[J]. 中国电机工程学报, 2017, 37(9): 2677-2686. Yao Kai, Tang Weijie, Bi Xiaopeng, et al.An on-line monitoring method of DC bus capacitance equivalent series resistance and capacitance of Boost PFC converter[J]. Proceedings of the CSEE, 2017, 37(9): 2677-2686. [18] 王立乔, 李占一, 刘乐, 等. 一种无电解电容单级Buck-Boost逆变器[J]. 电工技术学报, 2019, 34(20): 4295-4305. Wang Liqiao, Li Zhanyi, Liu Le, et al.A single-stage Buck-Boost inverter with non-electrolytic capacitor[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4295-4305. [19] 刘树林, 刘健. 开关变换器分析与设计[M]. 北京: 机械工业出版社, 2011. [20] 刘树林, 刘健. 本质安全开关变换器[M]. 北京: 科学出版社, 2008. [21] 皇金锋, 李林鸿, 董锋斌, 等. 考虑滤波电容ESR的Boost变换器输出纹波电压畸变机理及精确建模[J]. 中国电机工程学报, 2020, 40(16): 5326-5337. Huang Jinfeng, Li Linhong, Dong Fengbin, et al.Distortion mechanism and accurate modeling of output ripple voltage of Boost converter on con- sidering filtering capacitor with ESR[J]. Proceedings of the CSEE, 2020, 40(16): 5326-5337. [22] 皇金锋, 李林鸿, 谢锋, 等. 含有右半平面零点的开关DC-DC变换器暂态性能分析及频域法设计[J]. 电工技术学报, 2020, 35(10): 2170-2180. Huang Jinfeng, Li Linhong, Xie Feng, et al.Transient performance analysis and frequency domain design of switched DC-DC converters with right half plane zero[J]. Transactions of China Electrotechnical Society, 2020, 35(10): 2170-2180. [23] GB 3846.4 电工卷中国强制性国家标准汇编[S].北京: 中国标准出版社, 2003. |
|
|
|