|
|
An Analytical Model for the Fast Prediction of the Shielding Effectiveness and Resonances of a Lossy Enclosure |
Gong Yanfei1, Chen Xingtong2, Gao Chaofei3, Sun Jian1 |
1. Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument Beijing Information Science and Technology University Beijing 100192 China; 2. State Grid Energy Research Institute Beijing 102209 China; 3. School of Automation Beijing Information Science and Technology University Beijing 100192 China |
|
|
Abstract An analytical model in this paper is presented to analyze the shielding performance of a lossy enclosure with apertures under the plane wave illumination. The presented model can not only predict the shielding effectiveness (SE) and resonances of a lossy enclosure with off-centered apertures and arbitrarily positioned monitor points, but also analyze the suppression effect of the lossy material on the higher order modes at higher frequencies. Firstly, according to the electromagnetic topology (EMT) theory and circuit theory, the equivalent circuit and signal flow graph of the lossy enclosure can be constructed. Then, the generalized Baum-Liu-Tesche (BLT) equation is derived based on the signal flow graph to calculate the maximum voltage response at the cross section of the monitor point. Finally, based on the relationship between voltage response and field distribution, the total electric field component can be obtained. In a word, the presented model can easily deal with the conditions of single aperture, aperture array and apertures at two opposing walls. CST simulation verifies the validity and accuracy of the presented model, which provides an efficient and reliable computing method in handling a lossy enclosure with apertures.
|
Received: 07 September 2020
|
|
|
|
|
[1] 郭庆来, 王博弘, 田年丰, 等. 能源互联网数据交易: 架构与关键技术[J]. 电工技术学报, 2020, 35(11): 2285-2295. Guo Qinglai, Wang Bohong, Tian Nianfeng, et al.Data transactions in energy internet: architecture and key technologies[J]. Transactions of China Electro- technical Society, 2020, 35(11): 2285-2295. [2] 肖勇, 钱斌, 蔡梓文, 等. 电力互联网终端非法无线通信链路检测方法[J]. 电工技术学报, 2020, 35(11): 2319-2327. Xiao Yong, Qian Bin, Cai Ziwen, et al.Malicious wireless communication link detection of power internet of thing devices[J]. Transactions of China Electrotechnical Society, 2020, 35(11): 2319-2327. [3] 陈民权, 甘德强, 康卓然, 等. 电力系统机电暂态的混合单调特性[J]. 电力系统自动化, 2020, 44(20): 37-45. Chen Minquan, Gan Deqiang, Kang Zhuoran, et al.Prospect of coordinate control technology in distri- bution network based on wide-area measurement information[J]. Automation of Electric Power Systems, 2020, 44(20): 37-45. [4] 赵清林, 宋文璐, 袁精, 等. 弱电网中基于调节其重构的多机并网稳定性研究[J]. 电机与控制学报, 2020, 24(1): 111-118. Zhao Qinglin, Song Wenlu, Yuan Jing, et al.Stability analysis of multi-grid-connected inverters based on regular reconstruction in weak grid[J]. Electric Machines and Control, 2020, 24(1): 111-118. [5] 徐箭, 廖思阳, 魏聪颖, 等. 基于广域量信息的配电网协调控制技术展望[J]. 电力系统自动化, 2020, 44(18): 12-22. Xu Jian, Liao Siyang, Wei Congying, et al.Prospect of coordinate control technology in distribution network based on wide-area measurement infor- mation[J]. Automation of Electric Power Systems, 2020, 44(18): 12-22. [6] 曹勇, 杨飞, 李春晖, 等. 不同耦合系数下的交错并联电流连续模式Boost功率因数校正变换器的传导电磁干扰[J]. 电工技术学报, 2019, 34(10): 2176-2186. Cao Yong, Yang Fei, Li Chunhui, et al.Conducted electromagnetic interference of interleaved con- tinuous current mode Boost power factor correction converter with different coupling coefficient[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2176-2186. [7] 沈栋, 杜贵平, 丘东元, 等. 无线电能传输系统电磁兼容研究现状及发展趋势[J]. 电工技术学报, 2020, 35(13): 2856-2869. Shen Dong, Du Guiping, Qiu Dongyuan, et al.Research status and development trend of electro- magnetic compatibility of wireless power trans- mission system[J]. Transactions of China Electro- technical Society, 2020, 35(13): 2856-2869. [8] Gong Yanfei, Wang Bo.An efficient method for predicting the shielding effectiveness of an enclosure with multiple apertures[J]. Journal of Electro- magnetic Waves and Applications, 2020, 34(8): 1057-1072. [9] Basyigit I B, Caglar M F.Investigation of the magnetic shielding parameters of rectangular enclosures with apertures at 0 to 3GHz[J]. Electromagnetics, 2016, 36(7): 434-446. [10] Gong Yanfei, Jiang Luhang, Li Yujie.Efficient method for the shielding effectiveness of an enclo- sure with electrically large apertures based on the Cohn model and mirror procedure[J]. IET Science, Measurement & Technology, 2020, 14(8): 932-939. [11] Yan Liping, Fang Mingjiang, Zhao Xiang, et al.Efficient shielding effectiveness prediction of structures with three-dimensional arbitrary thin slots using extended CP-FDTD[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(4): 1353-1361. [12] Mai Huanxiao, Chen Juan, Zhang Anxue.A hybrid algorithm based on FDTD and HIE-FDTD methods for simulating shielding enclosure[J]. IEEE Transa- ctions on Electromagnetic Compatibility, 2018, 60(5): 1393-1399. [13] Carpes W P, Ferreira G S, Raizer A, et al.TLM and FEM methods applied in the analysis of electro- magnetic coupling[J]. IEEE Transactions on Electro- magnetic Compatibility, 2000, 36(4): 982-985. [14] Nie Baolin, Du Pingan, Yu Yating, et al.Study of the shielding properties of enclosures with apertures at higher frequencies using the transmission-line modeling method[J]. IEEE Transactions on Electromagnetic Compatibility, 2011, 53(1): 73-81. [15] Dehkhoda P, Tavakoli A, Azadifar M.Shielding effectiveness of an enclosure with finite wall thickness and perforated opposing walls at oblique incidence and arbitrary polarization by GMMoM[J]. IEEE Transactions on Electromagnetic Compatibility, 2012, 54(4): 792-805. [16] Chen Ke, Du Ping'an, Nie Baolin, et al.An improved MOM approach to determine the shielding properties of a rectangular enclosure with a doubly periodic array of apertures[J]. IEEE Transactions on Electro- magnetic Compatibility, 2016, 58(5): 1456-1464. [17] Robinson M P, Turner J D, Thomas D W P, et al. Shielding effectiveness of a rectangular enclosure with a rectangular aperture[J]. IEEE Transactions on Electromagnetic Compatibility, 1998, 40(3): 240-248. [18] Bethe H A.Theory of diffraction by small holes[J]. Physical Review 2nd Series, 1944, 66(7-8): 163-182. [19] Konefal T, Dawson J F, Marvin A C.A fast multiple mode intermediate level circuit model for the prediction of shielding effectiveness of a rectangular box containing a rectangular aperture[J]. IEEE Transactions on Electromagnetic Compatibility, 2005, 47(4): 678-691. [20] Shim J, Kam D G, Kwon J H, et al.Circuital modeling and measurement of shielding effectiveness against oblique incidence plane wave on apertures in multiple sides of rectangular enclosure[J]. IEEE Transactions on Electromagnetic Compatibility, 2010, 52(3): 566-577. [21] Yin Mingchu, Du Ping'an.An improved circuit model for the prediction of the shielding effectiveness and resonances of an enclosure with apertures[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(2): 448-456. [22] Shourvarzi A, Joodaki M.Using aperture impedance for shielding effectiveness estimation of a metallic enclosure with multiple apertures on different walls considering higher order modes[J]. IEEE Transa- ctions on Electromagnetic Compatibility, 2018, 60(3): 629-637. [23] 阚勇, 闫丽萍, 赵翔, 等. 基于电磁拓扑的多腔体屏蔽效能快速算法[J]. 物理学报, 2016, 65(3): 88-99. Kan Yong, Yan Liping, Zhao Xiang, et al.Electro- magnetic topology based fast algorithm for shielding effectiveness estimation of multiple enclosures with apertures[J]. Acta Physica Sinica, 2016, 65(3): 88-99. [24] 郝建红, 蒋璐行, 钱思羊. 基于BLT方程的内置介质板异型腔屏蔽效能[J]. 电工技术学报, 2020, 35(18): 3791-3801. Hao Jianhong, Jiang Luhang, Qian Siyang.The shielding effectiveness of heterotypic enclosures embedded dielectric layers based on the BLT equation[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3791-3801. [25] 罗静雯, 杜平安, 任丹, 等. 一种基于BLT方程的孔缝箱体屏蔽效能计算方法[J]. 物理学报, 2015, 64(1): 62-69. Luo Jingwen, Du Ping'an, Ren Dan, et al.A BLT equation-based approach for calculating the shielding effectiveness of enclosures with apertures[J]. Acta Physica Sinica, 2015, 64(1): 62-69. [26] Gong Yanfei, Li Yujie, Jiang Luhang.Efficient analytical method for the shielding effectiveness of an apertured enclosure based on the BLT equation[J]. IET Science, Measurement & Technology, 2020, 14(8): 897-904. [27] 郝建红, 公延飞, 范杰清, 等. 一种内置条状金属板的双层金属腔体屏蔽效能的理论模型[J]. 物理学报, 2016, 65(4): 53-60. Hao Jianhong, Gong Yanfei, Fan Jieqing, et al.An analytical model for shielding effectiveness of double layer rectangular enclosure with inner strip-shaped metallic plate[J]. Acta Physica Sinica, 2016, 65(4): 53-60. [28] 牛帅, 焦重庆, 李琳. 中等导电性材料覆盖的金属腔体的电磁屏蔽效能研究[J]. 物理学报, 2013, 62(21): 142-147. Niu Shuai, Jiao Chongqing, Li Lin.Shielding effectiveness of a metal cavity covered by a material with a medium conductivity[J]. Acta Physica Sinica, 2013, 62(21): 142-147. [29] Jiao Chongqing, Zhu Hongzhao.Resonance suppression and electromagnetic shielding effectiveness improvement of an apertured rectangular cavity by using wall losses[J]. Chinese Physics B, 2013, 22(8): 084101. [30] Rabat A, Bonnet P, Drissi K E K, et al. Analytical models for electromagnetic coupling of an open metallic shield containing a loaded wire[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(5): 1634-1637. |
|
|
|