|
|
Insulator Self-Explosion Defect Detection Based on Hierarchical Multi-Task Deep Learning |
Xu Jianjun, Huang Lida, Yan Limei, Yi Na |
School of Electrical Engineering and Information Northeast Petroleum University Daqing 163318 China |
|
|
Abstract Insulators are important and widely used devices in power lines. With the rapid popularization of unmanned aerial vehicles in recent years, detecting insulator self-explosion defect from aerial images has become a hot issue. In aerial images, distinguishing self-explosion insulators from normal insulators is more difficult than from other contents. The paper proposed an insulator self-explosion defect detection model based on hierarchical multi-task deep learning, using a dedicated convolutional neural network to distinguish self-explosion insulators from normal insulators. To improve the classification accuracy, multi-task learning and feature fusion method were used in the hierarchical model. Furthermore, in view of the lack of self-explosion insulator data, the paper proposed to use synthetic pictures for data augmentation. The experimental results show that adding synthetic pictures can effectively improve the recall rate of self-explosion class, and the hierarchical multi-task learning model achieves stronger classification performance than the flat classification model and the ordinary hierarchical model.
|
Received: 10 June 2020
|
|
|
|
|
[1] 王渊, 马国明, 周宏扬, 等. SF6/N2混合气体中直流叠加雷电冲击复合电压作用下绝缘子闪络特性[J].电工技术学报, 2019, 34(14): 3084-3092. Wang Yuan, Ma Guoming, Zhou Hongyang, et al.Flashover characteristics of spacers in SF6/N2-filled under composite voltage of DC and lightning impulse[J]. Transactions of China Electrotechnical Society, 2019, 34(14): 3084-3092. [2] 张汉花, 邹军, 田蓓, 等. 高空核爆电磁脉冲激励下架空输配电线路绝缘子闪络情况分析[J]. 电工技术学报, 2020, 35(2): 435-443. Zhang Hanhua, Zou Jun, Tian Bei, et al.Flashover possibility analysis of overhead power transmission and distribution line insulators with the excitation of high altitude electromagnetic pulse[J]. Transactions of China Electrotechnical Society, 2020, 35(2): 435-443. [3] 王旭红, 李浩, 樊绍胜, 等. 基于改进SSD的电力设备红外图像异常自动检测方法[J]. 电工技术学报, 2020, 35(增刊1): 302-310. Wang Xuhong, Li Hao, Fan Shaosheng, et al.Infrared image anomaly automatic detection method for power equipment based on improved single shot multi box detection[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 302-310. [4] 周封, 任贵新. 基于颜色空间变量的输电线图像分类及特征提取[J]. 电力系统保护与控制, 2018, 46(5): 89-98. Zhou Feng, Ren Guixin.Image classification and feature extraction of transmission line based on color space variable[J]. Power System Protection and Control, 2018, 46(5): 89-98. [5] 左国玉, 马蕾, 徐长福, 等. 基于跨连接卷积神经网络的绝缘子检测方法[J]. 电力系统自动化, 2019, 43(4): 101-108. Zuo Guoyu, Ma Lei, Xu Changfu, et al.Insulator detection method based on cross-connected convolutional neural network[J]. Automation of Electric Power Systems, 2019, 43(4): 101-108. [6] 王浩, 杨东升, 周博文, 等. 基于并联卷积神经网络的多端直流输电线路故障诊断[J]. 电力系统自动化, 2020, 44(12): 84-95. Wang Hao, Yang Dongsheng, Zhou Bowen, et al.Fault diagnosis of multi-terminal HVDC transmission line based on parallel convolutional neural network[J]. Automation of Electric Power Systems, 2020, 44(12): 84-95. [7] 冯双, 陈佳宁, 汤奕, 等. 基于SPWVD图像和深度迁移学习的强迫振荡源定位方法[J]. 电力系统自动化, 2020, 44(17): 78-91. Feng Shuang, Chen Jianing, Tang Yi, et al.Location method of forced oscillation source based on SPWVD image and deep transfer learning[J]. Automation of Electric Power Systems, 2020, 44(17): 78-91. [8] 李建闽, 林海军, 梁成斌, 等. 基于双分辨率S变换和学习向量量化神经网络的电能质量扰动检测方法[J]. 电工技术学报, 2019, 34(16): 3453-3463. Li Jianmin, Lin Haijun, Liang Chengbin, et al.Detection method of power quality disturbances based on double resolution S transform and learning vector quantization neural network[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3453-3463. [9] 向川, 王惠, 史鹏飞, 等. 基于改进脉冲耦合神经网络模型的真空电弧燃烧过程研究[J]. 电工技术学报, 2019, 34(19): 4028-4037. Xiang Chuan, Wang Hui, Shi Pengfei, et al.Research on the combustion process of vacuum arc based on an improved pulse coupled neural network model[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 4028-4037. [10] 刘思言, 王博, 高昆仑, 等. 基于R-FCN的航拍巡检图像目标检测方法[J]. 电力系统自动化, 2019, 43(13): 162-172. Liu Siyan, Wang Bo, Gao Kunlun, et al.Object detection method for aerial inspection image based on region-based fully convolutional network[J]. Automation of Electric Power Systems, 2019, 43(13): 162-172. [11] 白洁音, 赵瑞, 谷丰强, 等. 多目标检测和故障识别图像处理方法[J]. 高电压技术, 2019, 45(11): 3504-3511. Bai Jieyin, Zhao Rui, Gu Fengqiang, et al.Multi-target detection and fault recognition image processing method[J]. High Voltage Engineering, 2019, 45(11): 3504-3511. [12] Ren S, He K, Girshick R, et al.Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [13] 吴涛, 王伟斌, 于力, 等. 轻量级YOLOV3的绝缘子缺陷检测方法[J]. 计算机工程, 2019, 45(8): 275-280. Wu Tao, Wang Weibin, Yu Li, et al.Insulator defect detection method for lightweight YOLOV3[J]. Computer Engineering, 2019, 45(8): 275-280. [14] Redmon J, Farhadi A. YOLOv3: an incremental improvement[EB/OL]. [2018-12-13]. https: //arxiv. org/pdf/1804. 02767. pdf. [15] Bai Ruixian, Cao Hui, Yu Yajie, et al.Insulator fault recognition based on spatial pyramid pooling networks with transfer learning (Match 2018)[C]// 2018 3rd IEEE International Conference on Advanced Robotics and Mechatronics (ICARM), Singapore, 2018: 824-828. [16] 张倩, 王建平, 李帷韬. 基于反馈机制的卷积神经网络绝缘子状态检测方法[J]. 电工技术学报, 2019, 34(16): 3311-3321. Zhang Qian, Wang Jianping, Li Weitao.Insulator state detection of convolutional neural networks based on feedback mechanism[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3311-3321. [17] Tao Xian, Zhang Dapeng, Wang Zihao, et al.Detection of power line insulator defects using aerial images analyzed with convolutional neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(4): 1486-1498. [18] 侯春萍, 章衡光, 张巍, 等. 输电线路绝缘子自爆缺陷识别方法[J]. 电力系统及其自动化学报, 2019, 31(6): 1-6. Hou Chunping, Zhang Hengguang, Zhang Wei, et al.Recognition method for faults of insulators on transmission lines[J]. Proceedings of the CSU-EPSA, 2019, 31(6): 1-6. [19] 潘哲, 张兴忠, 杨罡, 等. 弱监督细粒度分类在绝缘子故障识别中的应用[J/OL]. 山西大学学报: 自然科学版, 2020: 1-12. Pan Zhe, Zhang Xingzhong, Yang Gang, et al.Application of weakly supervised fine-grained classification in insulator fault identification[J]. Journal of Shanxi University: Natural Science Edition, 2020: 1-12. [20] 李喆, 李建增. 小型无人机模糊图像复原问题分析[J]. 兵器装备工程学报, 2019, 40(3): 165-168. Li Zhe, Li Jianzeng.Analysis of blurred image restoration for small UAV[J]. Journal of Ordnance Equipment Engineering, 2019, 40(3): 165-168. [21] 程海燕, 韩璞, 董泽, 等. 无人机航拍电力部件图像准确分类[J]. 计算机仿真, 2018, 35(8): 424-428. Cheng Haiyan, Han Pu, Dong Ze, et al.Accurate classification of UAV aerial images contained power facilities[J]. Computer Simulation, 2018, 35(8): 424-428. [22] Ronneberger O, Fischer P, Brox T.U-Net: convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015: 234-241. [23] 赵其鲁, 李宗民. 基于深度多任务学习的层次分类[J]. 计算机辅助设计与图形学学报, 2018, 30(5): 886-892. Zhao Qilu, Li Zongmin.Deep multi-task learning for hierarchical classification[J]. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(5): 886-892. [24] Yan Zhicheng, Zhang Hao, Piramuthu R, et al.HD-CNN: hierarchical deep convolutional neural networks for large scale visual recognition[C]//Proceedings of International Conference on Computer Vision, Los Alamitos: IEEE Computer Society Press, 2015: 2740-2748 [25] He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al.Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, DOI: 10.1109/CVPR.2016.90 [26] Han Jiaming, Yang Zhong, Zhang Qiuyan, et al.A method of insulator faults detection in aerial images for high-voltage transmission lines inspection[J]. Applied Sciences, 2019, 9(10): 2009. |
|
|
|