|
|
Variable Forgetting Factor Recursive Least Squales Based Parameter Identification Method for the Equivalent Circuit Model of the Supercapacitor Cell Module |
Xie Wenchao1, Zhao Yanming1,2, Fang Ziwei1, Liu Shuli1 |
1. School of Information and Electrical Engineering Hunan University of Science and Technology Xiangtan 411201 China; 2. School of Engineering Research Center of Hunan Province for the Mining and Utilization of Wind Turbines Operation Data Hunan University of Science and Technology Xiangtan 411201 China |
|
|
Abstract In order to accurately identify the parameters of the equivalent model of supercapacitor cell module in the backup power supply of the pitch system of megawatt wind turbine and to solve the problem that the gain decreases too fast due to the data saturation phenomenon, the three-branch equivalent circuit model for the supercapacitor cell module was established, and a parameter identification method of the equivalent circuit model of supercapacitor cell module based on variable forgetting factor recursive least squares(RLS) was proposed in this paper. Then, the Simulink simulation model was also established for the multi-method parameter identification of supercapacitor cell module, and the simulation and analysis were performed. The comprehensive error in the static self-discharge phase of this new method is 0.19%, which is 6.92% and 0.09% lower than circuit analysis method and segmentation optimization method, respectively. Its comprehensive error in the whole process is 1.22%, which is reduced by 9.5% and 1.6% compared with circuit analysis method and segmentation optimization method, respectively. The results show that the new method has higher identification accuracy than circuit analysis method and segmentation optimization method.
|
Received: 04 January 2020
|
|
|
|
|
[1] He Jiafa, Huang Linbin, Wu Di, et al.Frequency support from PMSG-based wind turbines with reduced DC-link voltage fluctuations[J]. CES Transactions on Electrical Machines and Systems, 2018, 2(3): 296-302. [2] 胡文胜, 丁艳军. 新型风力发电机组变桨控制算法研究[J]. 电力电子技术, 2013, 47(2): 53-54, 60. Hu Wensheng, Ding Yanjun.Research on new pitch control algorithm of wind power generators[J]. Power Electronics, 2013, 47(2): 53-54, 60. [3] Guo Bixiao, Wu Jian, Qun Ju, et al.The Lithium-ion battery standby power of wind turbine pitch system[J]. Energy Procedia, 2017, 105(1): 3539-3544. [4] Zhou Yanting, Huang Yinuo, Pang Jinbo, et al.Remaining useful life prediction for supercapacitor based on long short-term memory neural network[J]. Journal of Power Sources, 2019, 440(21): 227149. [5] Zhou Yanting, Wang Yanan, Wang Kai, et al.Hybrid genetic algorithm method for efficient and robust evaluation of remaining useful life of supercapacitors[J]. Applied Energy, 2020, 260(4): 114169. [6] Afir A, Rahman S M H, Atia Tasfiah Azad, et al. Advanced materials and technologies for hybrid supercapacitors for energy storage-a review[J]. Journal of Energy Storage, 2019, 25: 100852. [7] Poonam, Kriti Sharma, Anmol Arora, et al. Review of supercapacitors: materials and devices[J]. Journal of Energy Storage, 2019, 21(1): 801-825. [8] Muzaffar A, Ahamed M B, Deshmukh K, et al.A review on recent advances in hybrid supercapacitors: design, fabrication and applications[J]. Renewable and Sustainable Energy Reviews, 2019, 22(12): 123-145. [9] 庞思远, 刘希喆. 石墨烯在电气领域的研究与应用综述[J]. 电工技术学报, 2018, 33(8): 1705-1722. Pang Siyuan, Liu Xizhe.Review on research and application of graphene in electrical field[J]. Transactions of China Electrotechnical Society, 2018, 33(8): 1705-1722. [10] 周美兰, 冯继峰, 张宇. 纯电动汽车复合储能系统及其能量控制策略[J]. 电机与控制学报, 2019, 23(5): 51-59. Zhou Meilan, Feng Jifeng, Zhang Yu.Composite energy storage system and its energy control strategy for electric vehicles[J]. Electric Machines and Control, 2019, 23(5): 51-59. [11] 罗志群, 万健如, 黄绍伦, 等. 超级电容储能式电梯应用研究[J]. 电机与控制学报, 2015, 19(6): 55-61. Luo Zhiqun, Wan Jianru, Huang Shaolun, et al.Research and application to supercapacitor for elevator energy-saving[J]. Electric Machines and Control, 2015, 19(6): 55-61. [12] 王世均, 陶建权, 吕彬, 等. 风电变桨超级电容容量监测及失效判定应用[J]. 船舶工程, 2019, 41(增刊1): 264-267. Wang Shijun, Tao Jianquan, Lü Bin, et al.Application of wind power variable oar ultracapacitor capacity monitoring and failure determination[J]. Ship Engineering, 2019, 41(S1): 264-267. [13] 张磊. 直驱永磁风力发电机组独立变桨控制系统研究[D]. 长沙: 湖南大学, 2016. [14] 黄羚, 蔡涛, 陈天锦, 等. 基于SOC 调整的光伏电站储能系统调控策略[J]. 电力系统保护与控制, 2013, 41(16): 66-70. Huang Ling, Cai Tao, Chen Tianjin, et al.Control strategy of battery energy storage system for large-scale PV system based on SOC adjustment[J]. Power System Protection and Control, 2013, 41(16): 66-70. [15] 石建, 周腊吾, 葛召炎, 等. 大风电机组变桨用超级电容模组健康状态在线监测方法研究[J]. 电力系统保护与控制, 2016, 44(12): 108-113. Shi Jian, Zhou Lawu, Ge Zhaoyan, et al.Online monitoring method of health state of ultracapacitor for wind turbine pitching[J]. Power System Protection and Control, 2016, 44(12): 108-113. [16] Wang Kai, Ren Baosen, Li Liwei, et al.A review of modeling research on supercapacitor[C]//2017 Chinese Automation Congress, Jinan, China, 2017: 5998-6001. [17] 马茜, 郭昕, 罗培, 等. 一种基于超级电容储能系统的新型铁路功率调节器[J]. 电工技术学报, 2018, 33(6): 1208-1218. Ma Qian, Guo Xin, Luo Pei, et al.A novel railway power conditioner based on super capacitor energy storage system[J]. Transactions of China Electrotechnical Society, 2018, 33(6): 1208-1218. [18] Zubieta L, Bonert R.Characterization of double-layer capacitors for power electronics applications[J]. IEEE Transactions on Industry Applications, 2000, 36(1): 199-205. [19] Goh C T, Cruden A.Bivariate quadratic method in quantifying the differential capacitance and energy capacity of supercapacitors under high current operation[J]. Journal of Power Sources, 2014, 265(20): 199-205. [20] 赵洋, 孙家南, 姜鸣. 基于改进最小二乘法的超级电容器特征参数辨识[J]. 高压电器, 2016, 52(5): 199-204. Zhao Yang, Sun Jianan, Jiang Ming.Identification of characteristic parameters of supercapacitors based on improved least squares method[J]. High Voltage Apparatus, 2016, 52(5): 199-204. [21] 张乐, 续丹, 王斌, 等. 采用权值配比优化的超级电容等效电路模型参数辨识[J]. 西安交通大学报, 2018, 52(2): 96-102. Zhang Le, Xu Dan, Wang Bin, et al.Parameter identification of the equivalent circuit model of supercapacitor using weight distribution optimization[J]. Journal of Xi'an Jiaotong University, 2018, 52(2): 96-102. [22] Xu Dan, Zhang Le, Wang Bin.Estimation of supercapacitor energy based on particle swarm optimization algorithm for its equivalent circuit model[J]. Energy Procedia, 2019, 158(2): 4974-4979. [23] 黄凯, 郭永芳, 李志刚. 基于信息反馈粒子群的高精度锂离子电池模型参数辨识[J]. 电工技术学报, 2019, 34(增刊1): 378-387. Huang Kai, Guo Yongfang, Li Zhigang.High precision parameter identification of lithium-ion battery model based on feedback particle swarm optimization algorithm[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 378-387. [24] Mejdoubi A E, Chaoui H, Gualous H, et al.Online parameter identification for supercapacitor state-of- health diagnosis for vehicular applications[J]. IEEE Transactions on Power Electronics, 2017, 32(12): 9355-9363. [25] 信月, 杨中平, 林飞, 等. 基于参数反馈的城轨交通超级电容健康状态估算[J]. 电工技术学报, 2019, 34(增刊1): 396-404. Xin Yue, Yang Zhongping, Lin Fei, et al.Research on state of health estimation of supercapacitor in urban rail transit based on parameter feedback[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 396-404. [26] Wang Kai, Li Liwei, Zhang Tiezhu.Sythesis of high voltage supercapacitor and electrochemical performance[J]. International Journal of Electrochemical Science, 2013, 8(5): 6900-6904. [27] 单金生, 吴立锋, 关永, 等. 超级电容建模现状及展望[J]. 电子元件与材料, 2013, 32(8): 5-10. Shan Jinsheng, Wu Lifeng, Guan Yong, et al.Current status and prospects of supercapacitor modeling[J]. Electronic Components and Materials, 2013, 32(8): 5-10. [28] 余波, 梁锐, 蒲亦非, 等. 超级电容器恒流充电的时域分数阶电路模型[J]. 电工技术学报, 2019, 34(17): 3533-3541. Yu Bo, Liang Rui, Pu Yifei, et al.Time-domain fractional circuit model for constant current charging of supercapacitor[J]. Transactions of China Electrotechnical Society, 2019, 34(17): 3533-3541. [29] Allagui A, Freeborn T J, Elwakil A S, et al.Review of fractional-order electrical characterization of supercapacitors[J]. Journal of Power Sources, 2018, 400(18): 457-467. [30] Varsha A, Prasanta K, Ranjan M, et al.Improved method for characterization of ultracapacitor by constant current charging[J]. International Journal of Modeling and Optimization, 2012, 2(3): 290-294. [31] Parvini Y, Siegel J B, Stefanopoulou A G, et al.Supercapacitor electrical and thermal modeling, identification, and validation for a wide range of temperature and power applications[J]. IEEE Transactions on Industrial Electronics, 2016, 63(3): 1574-1585. [32] 刘振宇, 马民, 马辉栋, 等. 阶梯式快速混合储能系统设计及控制策略研究[J]. 电力系统保护与控制, 2015, 43(9): 69-75. Liu Zhenyu, Ma Min, Ma Huidong, et al.Storage system and control stratrgy research of stepwise and fast storage energy[J]. Power System Protection and Control, 2015, 43(9): 69-75. [33] 卫志农, 原康康, 成乐祥, 等. 基于多新息最小二乘算法的锂电池参数辨识[J].电力系统自动化, 2019, 43(15): 139-145. Wei Zhinong, Yuan Kangkang, Cheng Lexiang, et al.Parameter identification of lithium-ion battery based on multi-innovation least squares algorithm[J]. Automation of Electric Power Systems, 2019, 43(15): 139-145. [34] 荀倩, 王培良, 李祖欣, 等. 基于递推最小二乘法的永磁伺服系统参数辨识[J]. 电工技术学报, 2016, 31(17): 161-169. Gou Qian, Wang Peiliang, Li Zuxin et al. PMSM parameter identification based on recursive least squares method[J]. Transactions of China Electrotechnical Society, 2016, 31(17): 161-169. [35] Garnier H, Gilson M, Bastogne T, et al.Identification de modèles paramètriques à temps continu à partir de donhées expérimental es[C]//Journées Identification et Modélisation Expérimentales (JIME’2006), Poitiers, France, 2006. [36] Landau loan D. Identification des systemes coll pedagogique d'automatique[M]. Paris: HERMES Science Publications, 1998, ISBN-10: 2866016831. [37] 徐湘元. 自适应控制理论与应用[M]. 北京: 电子工业出版社, 2007. [38] Zhao Yanming, Xie Wenchao, Fang Ziwei, et al.A parameters identification method of the equivalent circuit model of the supercapacitor cell module based on segmentation optimization[J]. IEEE Access, 2020, 8: 92895-92906. |
|
|
|