|
|
Transient Stability Enhancement with an Adaptive Control Scheme for Photovoltaic Plants |
Yu Moduo1, Huang Wentao1, Tai Nengling1, Ma Zhoujun2, He Yangyang1 |
1. Key Laboratory of Control of Power Transmission and Conversion Ministry of Education Shanghai Jiao Tong University Shanghai 200240 China; 2. Nanjing Power Supply Bureau State Grid Jiangsu Electrical Company Nanjing 210004 China |
|
|
Abstract The world-wide application of photovoltaic (PV) plants is a promising solution to the energy crisis. However, PV plants have the problem of transient stability due to the lack of dynamic moment of inertia. This paper, based on the transient stability mechanism, devises an adaptive control scheme to achieve transient stability enhancement for PV plants. The mechanism shows that the active droop factor is negatively associated with the transient stability whereas the reactive droop factor is positively associated. The transient stability enhancement is implemented by increasing the reactive droop factor and reducing the active droop factor to raise the power angle curve. The proposed control scheme adjusts the droop factors dynamically during the transient events through detecting the real-time electrical quantities. The control scheme advances in a designed activation module which is able to judge if there exist transient events. A series of simulation cases demonstrate the effectiveness of the control scheme in different transient events. Simulation results show that the control scheme adjusts droop factors adaptively and possesses better transient stability than the original control.
|
Received: 13 December 2019
|
|
|
|
|
[1] Rehmani M H, Rachedi A, Erol-Kantarci M, et al.Cognitive radio based smart grid: the future of the traditional electrical grid[J]. Ad Hoc Networks, 2016, 41: 1-4. [2] 易文飞, 张艺伟, 曾博, 等.多形态激励型需求侧响应协同平衡可再生能源波动的鲁棒优化配置[J]. 电工技术学报, 2018, 33(23): 5541-5554. Yi Wenfei, Zhang Yiwei, Zeng Bo, et al.Robust optimization allocation for multi-type incentive-based demand response collaboration to balance renewable energy fluctuations[J]. Transactions of China Electrotechnical Society, 2018, 33(23): 5541-5554. [3] 丛鹏伟, 唐巍, 娄铖伟, 等. 含高渗透率可再生能源的主动配电网两阶段柔性软开关与联络开关协调优化控制[J]. 电工技术学报, 2019, 34(6): 1263-1272. Cong Pengwei, Tang Wei, Lou Chengwei, et al.Two-stage coordination optimization control of soft open point and tie switch in active distribution network with high penetration renewable energy generation[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1263-1272. [4] 陈海焱, 段献忠, 陈金富. 分布式发电对配网静态电压稳定性的影响[J]. 电网技术, 2006, 30(19): 27-30. Chen Haiyan, Duan Xianzhong, Chen Jinfu.Impacts of distributed generation on steady state voltage stability of distribution system[J]. Power System Technology, 2006, 30(19): 27-30. [5] 刘健, 尹海霞, 尚海仓, 等. 基于二分法的本地控制改善含分布式电源配电网电压质量[J]. 电力系统保护与控制, 2016, 44(18): 61-67. Liu Jian, Yin Haixia, Shang Haicang, et al.Voltage performance improvement by dichotomy based local control for power distribution networks with distributed generation[J]. Power System Protection and Control, 2016, 44(18): 61-67. [6] Bazelis E I, Papathanassiou S A, Pal B C.PV system control to provide active power reserves under partial shading conditions[J]. IEEE Transactions on Power Electronics, 2018, 33(11): 9163-9175. [7] 任振宇, 张师, 田超华, 等. 基于轨迹灵敏度的风火打捆系统暂态稳定预防控制[J]. 电气技术, 2016, 17(6): 5-8. Ren Zhenyu, Zhang Shi, Tian Chaohua, et al.Preventive control of improving wind-thermal bundled system transient stability based on trajectory sensitivity[J]. Electrical Engineering, 2016, 17(6): 5-8. [8] Marchiano M, Rayworth D M J, Alegria E, et al. Power generation load sharing using droop control in an island system[J]. IEEE Transactions on Industry Applications, 2018, 54(2): 1890-1898. [9] 帅智康, 邹福筱, 涂春鸣, 等. 微网暂态稳定性研究[J]. 电力系统自动化, 2015, 39(16): 151-159. Shuai Zhikang, Zou Fuxiao, Tu Chunming, et al.Review on transient stability of microgrid[J]. Automation of Electric Power Systems, 2015, 39(16): 151-159. [10] Sun Yao, Shi Guangze, Li Xing, et al.An f-P/Q droop control in cascaded-type microgrid[J]. IEEE Transactions on Power Systems, 2018, 33(1): 1136-1138. [11] Remon D, Cañizares C A, Rodriguez P.Impact of 100-MW-scale PV plants with synchronous power controllers on power system stability in northern Chile[J]. IET Generation, Transmission & Distribution, 2017, 11(11): 2958-2964. [12] 肖朝霞, 方红伟. 含多分布式电源的微网暂态稳定分析[J]. 电工技术学报, 2011, 26(增刊1): 253-261. Xiao Chaoxia, Fang Hongwei.Transient stability analysis of microgrids containing multiple micro sources[J]. Transactions of China Electrotechnical Society, 2011, 26(S1): 253-261. [13] Pogaku N, Prodanovic M, Green T C.Modeling, analysis and testing of autonomous operation of an inverter-based microgrid[J]. IEEE Transactions on Power Electronics, 2007, 22(2): 613-625. [14] Kasem Alaboudy A H, Zeineldin H H, Kirtley J. Microgrid stability characterization subsequent to fault-triggered islanding incidents[J]. IEEE Transactions on Power Delivery, 2012, 27(2): 658-669. [15] Ge Luming, Qu Linan, Zhu Lingzhi, et al.Impact of fault-ride-through strategy on dynamic characteristics of photovoltaic power plant[J]. The Journal of Engineering, 2017(13): 2130-2134. [16] Zhang Yun, Xie Le.A transient stability assessment framework in power electronic-interfaced distribution systems[J]. IEEE Transactions on Power Systems, 2016, 311(6): 5106-5114. [17] Yu Moduo, Huang Wentao, Tai Nengling, et al.Transient stability mechanism of grid-connected inverter-interfaced distributed generators using droop control strategy[J]. Applied Energy, 2018, 210: 737-747. [18] 黄林彬, 章雷其, 辛焕海, 等. 下垂控制逆变器的虚拟功角稳定机理分析[J]. 电力系统自动化, 2016, 40(12): 117-124. Huang Linbin, Zhang Leiqi, Xin Huanhai, et al.Mechanism analysis of virtual power angle stability in droop-controlled inverters[J]. Automation of Electric Power Systems, 2016, 40(12): 117-124. [19] Messo T, Jokipii J, Puukko J, et al.Determining the value of DC-link capacitance to ensure stable operation of a three-phase photovoltaic inverter[J]. IEEE Transactions on Power Electronics, 2014, 29(2): 665-673. [20] Zhang Dan, Jiang Jianguo, Zhang Liang, et al.Research on seamless switching control strategy for T-type three-level energy storage inverter based on virtual synchronous generator[J]. The Journal of Engineering, 2017, 13: 1524-1527. [21] Duckwitz D, Fischer B.Modeling and design of df/dt-based inertia control for power converters[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5(4): 1553-1564. [22] Zakipour A, Kojori S S, Bina M T.Closed-loop control of the grid-connected Z-source inverter using hyper-plane MIMO sliding mode[J]. IET Power Electronics, 2017, 10(15): 2229-2241. [23] Sefa I, Ozdemir S, Komurcugil H, et al.Comparative study on Lyapunov-function-based control schemes for single-phase grid-connected voltage-source inverter with LCL filter[J]. IET Renewable Power Generation, 2017, 11(11): 1473-1482. [24] Xu Yinliang.Robust finite-time control for autonomous operation of an inverter-based microgrid[J]. IEEE Transactions on Industrial Informatics, 2017, 13(5): 2717-2725. [25] 杨道培, 丁志刚, 曹炜. 基于下垂控制的直流微电网小扰动稳定性分析[J]. 电气技术, 2015, 16(7): 20-26. Yang Daopei, Ding Zhigang, Cao Wei.Small signal stability analysis of DC micro-grid based on droop control[J]. Electrical Engineering, 2015, 16(7): 20-26. [26] Iyer S V, Belur M N, Chandorkar M C.A generalized computational method to determine stability of a multi-inverter microgrid[J]. IEEE Transactions on Power Electronics, 2010, 25(9): 2420-2432. |
|
|
|