|
|
Distributed and Robust Optimal Scheduling Model for Large-Scale Electric Vehicles Connected to Grid |
Xu Gang, Zhang Bingxu, Zhang Guangchao |
School of Electrical & Electronic Engineering North China Electric Power University Beijing 102206 China |
|
|
Abstract The coordinated regulation of electric vehicle (EV) cluster and distributed energy is a powerful means to ensure the optimal economic operation of the power grid. Considering the different preferences of EV users in actual scenarios, an EV control model with demand preferences is established. Then, the polyhedral uncertainty sets are constructed to represent the intermittent characteristics of wind and photovoltaic and the demand volatility of EV cluster in three dimensions: time, space and power interval. A deterministic optimization model is established with minimum cost of system operation, and based on the uncertainty set of polyhedrons, deterministic optimization is transformed into robust optimization through robust peer-to-peer transformation. The alternating direction method of multipliers(ADMM) algorithm is used to decouple the robust optimization model ,which achieves collaborative distributed iterative solution for EV clusters and other distributed energy sources. The example analysis demonstrates that the proposed robust optimization model minimizes the system operating cost while taking into account the preferences of EV users.
|
Received: 23 May 2020
|
|
|
|
|
[1] 张潇, 栗然, 马涛, 等. 基于主从博弈和贪心策略的含电动汽车主动配电网优化调度[J]. 电力自动化设备, 2020, 40(4): 103-110. Zhang Xiao, Li Ran, Ma Tao, et al.Stackelberg game and greedy strategy based optimal dispatch of active distribution network with electric vehicles[J]. Electric Power Automation Equipment, 2020, 40(4): 103-110. [2] 吴赋章, 杨军, 林洋佳, 等. 考虑用户有限理性的电动汽车时空行为特性[J]. 电工技术学报, 2020, 35(7): 1563-1574. Wu Fuzhang, Yang Jun, Lin Yangjia, et al.Research on spatiotemporal behavior of electric vehicles considering the users’ bounded rationality[J]. Transactions of China Electrotechnical Society, 2020, 35(7): 1563-1574. [3] Zhao Jian, Wan Can, Xu Zhao, et al.Risk-based day-ahead scheduling of electric vehicle aggregator using information gap decision in theory[J]. IEEE Transactions on Smart Grid, 2017(8): 1609-1618. [4] Wei Congying, Xu Jian, Liao Siyang, et al.Aggregation and scheduling models for electric vehicles in distribution networks considering power fluctuations and load rebound[J]. IEEE Transactions on Sustainable Energy, 2020, 11: 2755-2764. [5] 陈吕鹏, 潘振宁, 余涛, 等. 基于动态非合作博弈的大规模电动汽车实时优化调度[J]. 电力系统自动化, 2019, 43(24): 32-40. Chen Lüpeng, Pan Zhenning, Yu Tao, et al.Real-time optimal dispatch for large-scale electric vehicles based on dynamicnon-cooperative game theory[J]. Automation of Electric Power Systems, 2019, 43(24): 32-40. [6] 孔顺飞, 胡志坚, 谢仕炜, 等. 含电动汽车充电站的主动配电网二阶段鲁棒规划模型及其求解方法[J].电工技术学报, 2020, 35(5): 1093-1105. Kong Shunfei, Hu Zhijian, Xie Shiwei, et al.Two-stage robust planning model and its solution algorithm of active distribution network containing electric vehicle charging stations[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 1093-1105. [7] 杨晓东, 张有兵, 蒋杨昌, 等. 微电网下考虑分布式电源消纳的电动汽车互动响应控制策略[J]. 电工技术学报, 2018, 33(2): 390-400. Yang Xiaodong, Zhang Youbing, Jiang Yangchang, et al.Renewable energy accommodation-based strategy for electric vehicle considering dynamic interaction in micro grid[J]. Transactions of China Electrotechnical Society, 2018, 33(2): 390-400. [8] Wang Yuntao, Su Zhou, Xu Qichao, et al.A novel charging scheme for electric vehicles with smart communities in vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(99): 8487-8501. [9] Zhang Wenjie, Oktoviano G, Quan Hao, et al.A multi-agent based integrated volt-var optimization engine for fast vehicle-to-grid reactive power dispatch and electric vehicle coordination[J]. Applied Energy, 2018, 229: 96-110. [10] Hao Ying, Dong Lei, Liang Jun, et al.Power forecasting-based coordination dispatch of PV power generation and electric vehicles charging in microgrid[J]. Renewable Energy, 2020, 155: 1191-1220. [11] Mazidi M, Rezaei N, Ghaderi A .Simultaneous power and heat scheduling of microgrids considering operational uncertainties: A new stochastic p-robust optimization approach[J]. Energy, 2019, 185: 239-253. [12] 梅生伟, 申铁龙, 刘康志. 现代鲁棒控制理论与应用[M]. 北京: 清华大学出版社, 2003. [13] Borges N, Soares J, Vale Z.A robust optimization for day-ahead microgrid dispatch considering uncertainties[J]. IFAC Papers On Line, 2017, 50(1): 3350-3355. [14] 石文超, 吕林, 高红均, 等. 考虑需求响应和电动汽车参与的主动配电网经济调度[J]. 电力系统自动化, 2020, 44(11): 41-51. Shi Wenchao, Lü Lin, Gao Hongjun.Economic dispatch of active distribution network with participation of demand response and electric vehicle[J]. Automation of Electric Power Systems, 2020, 44(11): 41-51. [15] Zhou Yaqin, Kumar R, Tang Shaojie.Incentive-based distributed scheduling of electric vehicle charging under uncertainty[J]. IEEE Transactions on Power Systems, 2019, 34(1): 3-11. [16] Rezaei N, Khazali A, Mazidi M, et al.Economic energy and reserve management of renewable-based microgrids in the presence of electric vehicle aggregators: a robust optimization approach[J]. Energy, 2020, 201: 117629. [17] 卢志刚, 王荟敬, 赵号, 等. 含V2G的虚拟电厂双层逆鲁棒优化调度策略[J]. 电网技术, 2017, 41(4): 1245-1252. Lu Zhigang, Wang Huijing, Zhao Hao, et al.Strategy of bilevel inverse robust optimization dispatch of virtual power plant containing V2G[J]. Power System Technology, 2017, 41(4): 1245-1252. [18] Shi Ruifeng, Li Shaopeng, Zhang Penghui, et al.Integration of renewable energy sources and electric vehicles in V2G network with adjustable robust optimization[J]. Renewable Energy, 2020: 153. [19] Baringo L, Amaro R S.A stochastic robust optimization approach for the bidding strategy of an electric vehicle aggregator[J]. Electric Power Systems Research, 2017, 146(5): 362-370. [20] 杨晓东, 张有兵, 翁国庆, 等. 基于虚拟电价的电动汽车充放电优化调度及其实现机制研究[J]. 电工技术学报, 2016, 31(17): 52-62. Yang Xiaodong, Zhang Youbing, Weng Guoqing, et al.Virtual time-of-use tariffs based optimal scheduling and implementation mechanism of electric vehicles charging and discharging[J]. Transactions of China Electrotechnical Society, 2016, 31(17): 52-62. [21] 叶畅, 苗世洪, 李姚旺等. 基于改进不确定边界的主动配电网鲁棒优化调度[J]. 电工技术学报, 2019, 34(19): 4084-4095. Ye Chang, Miao Shihong, Li Yaowang.Robust optimal scheduling for active distribution network based on improved uncertain boundary[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 4084-4095. [22] 邢强, 陈中, 黄学良, 等. 基于数据驱动方式的电动汽车充电需求预测模型[J]. 中国电机工程学报, 2020, 40(12): 3796-3813. Xing Qiang, Chen Zhong, Huang Xueliang, et al.Electric vehicle charging demand forecasting model based on data-driven approach[J]. Proceedings of the CSEE, 2020, 40(12): 3796-3813. [23] 程亦直, 张沛超. 配电网中电动汽车的实时滚动交易式充电管理[J]. 中国电机工程学报, 2019, 39(19): 5703-5713, 5898. Cheng Yizhi, Zhang Peichao.Real-time rolling transactive charging management of electric vehicles in distribution network[J]. Proceedings of the CSEE, 2019, 39(19): 5703-5713, 5898. [24] Mazidi M, Monsef H, Siano P, et al.Incorporating price-responsive customers in day-ahead scheduling of smart distribution networks[J]. Energy Conversion and Management, 2016, 115: 103-116. [25] 黄伟, 熊伟鹏, 华亮亮, 等. 基于动态调度优先级的主动配电网多目标优化调度[J]. 电工技术学报, 2018, 33(15): 3486-3498. Huang Wei, Xiong Weipeng, Hua Liangliang, et al.Multi-objective optimization dispatch of active distribution network based on dynamic schedule priority[J]. Transactions of China Electrotechnical Society, 2018, 33(15): 3486-3498. [26] Bertsimas D, Sim M.Robust discrete optimization and network flows[J]. Mathematical Programming, 2003, 98(1): 49-71. [27] Li Zhigang, Wu Wenchuan, Zeng Bo, et al.Decentra-lized contingency-constrained tie-line scheduling for multi-area power grids[J]. IEEE Transactions Power Systems, 2017, 32(1): 354-367. |
|
|
|