|
|
Optimal Configuration of Hydrogen Storage in Industrial Park Integrated Energy System Based on Stackelberg Game |
Xiong Yufeng1, Si Yang1, Zheng Tianwen2,3, Chen Laijun2, Mei Shengwei2 |
1. State Key Laboratory of Control and Simulation of Power System and Generation Equipments Department of Electrical Engineering Tsinghua University Beijing 100084 China; 2. New Energy (Photovoltaic) Industry Research Center Qinghai University Xining 810016 China; 3. Sichuan Energy Internet Research Institute Tsinghua University Chengdu 610213 China |
|
|
Abstract In the integrated energy system of small and medium-sized industrial parks under the separation of source and network, the weak external energy supply network and high heat load demand have caused risks of energy imbalance and a single profit model for system operators. To improve the energy balance and increase the revenue of system operators, combining the merit of hydrogen storage in multi-energy storage and supply, a framework of industrial park integrated energy system containing hydrogen storage is proposed. Referring to the current “price-energy” game mechanism, the multi-energy model of hydrogen system in integrated energy system and game model of all agents have been formulated. Furthermore, this paper presents a three-phase framework of integrated energy system Stackelberg game considering the configuration of hydrogen system. Besides, a solving algorithm has been proposed combining genetic algorithm and mix integer programming. The cases validate that hydrogen storage system can improve the energy balance and benefit of operators under the optimal configuration capacity.
|
Received: 31 May 2020
|
|
|
|
|
[1] Girardin L, Marechal F, Dubuis M, et al.EnerGis: a geographical information based system for the evaluation of integrated energy conversion systems in urban areas[J]. Energy, 2010, 35(2): 830-840. [2] Wang Chengshan, Lü Chaoxian, Li Peng, et al.Modeling and optimal operation of community integrated energy systems: a case study from China[J]. Applied Energy, 2018, 230: 1242-1254. [3] 张义志, 王小君, 和敬涵, 等. 考虑供热系统建模的综合能源系统最优能流计算方法[J]. 电工技术学报, 2019, 34(3): 562-570. Zhang Yizhi, Wang Xiaojun, He Jinghan, el al. Optimal energy flow calculation method of integrated energy system considering thermal system modeling[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 562-570. [4] 余晓丹, 徐宪东, 陈硕翼, 等. 综合能源系统与能源互联网简述[J]. 电工技术学报, 2016, 31(1): 1-13. Yu Xiaodan, Xu Xiandong, Chen Shuoyi, et al.A brief review to integrated energy system and energy Internet[J]. Transactions of China Electrotechnical Society, 2016, 31(1): 1-13. [5] 李建林, 牛萌, 周喜超, 等. 能源互联网中微能源系统储能容量规划及投资效益分析[J]. 电工技术学报, 2020, 35(4): 874-884. Li Jianlin, Niu Meng, Zhou Xichao, et al.Energy storage capacity planning and investment benefit analysis of micro-energy system in energy interconnection[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 874-884. [6] 卢强, 陈来军, 梅生伟. 博弈论在电力系统中典型应用及若干展望[J]. 中国电机工程学报, 2014, 34(29): 5009-5017. Lu Qiang, Chen Laijun, Mei Shengwei.Typical applications and prospects of game theory in power system[J]. Proceedings of the CSEE, 2014, 34(29): 5009-5017. [7] 顾洁, 白凯峰, 时亚军. 基于多主体主从博弈优化交互机制的区域综合能源系统优化运行[J]. 电网技术, 2019, 43(9): 3119-3134. Gu Jie, Bai Kaifeng, Shi Yajun.Optimized operation of regional integrated energy system based on multi-agent master-slave game optimization interaction mechanism[J], Power System Technology, 2019, 43(9): 3119-3134. [8] 郝然, 艾芊, 姜子卿. 区域综合能源系统多主体非完全信息下的双层博弈策略[J]. 电力系统自动化, 2018, 42(4): 194-201. Hao Ran, Ai Qian, Jiang Ziqing.Bi-level game strategy for multi-agent with incomplete information in regional integrated energy system[J]. Automation of Electric Power Systems, 2018, 42(4): 194-201. [9] 王海洋, 李珂, 张承慧, 等. 基于主从博弈的社区综合能源系统分布式协同优化运行策略[J/OL]. 中国电机工程学报: 1-11[2020-05-04]. Wang Haiyang, Li Ke, Zhang Chenghui, et al.Distributed coordinative optimal operation of community integrated energy system based on Stackelberg game[J/OL]. Proceedings of the CSEE: 1-11[2020-05-04]. [10] Gitizadeh M, Farhadi S, Safarloo S.Multi-objective energy management of CHP-based microgrid considering demand response programs[C]//2014 Smart Grid Conference (SGC), IEEE, Tehran, Iran, 2014: 1-7. [11] 杨铮, 彭思成, 廖清芬, 等. 面向综合能源园区的三方市场主体非合作交易方法[J]. 电力系统自动化, 2018, 42(14): 32-39, 47. Yang Zheng, Peng Sicheng, Liao Qingfen, et al.Non-cooperative trading method for three market entities in integrated community energy system[J]. Automation of Electric Power Systems, 2018, 42(14): 32-39, 47. [12] 徐业琰, 廖清芬, 刘涤尘, 等. 基于综合需求响应和博弈的区域综合能源系统多主体日内联合优化调度[J]. 电网技术, 2019, 43(7): 2506-2518. Xu Yeyan, Liao Qingfen, Liu Dichen, et al.Multi-player intraday optimal dispatch of integrated energy system based on integrated demand response and games[J]. Power System Technology, 2019, 43(7): 2506-2518. [13] 吴利兰, 荆朝霞, 吴青华, 等. 基于Stackelberg博弈模型的综合能源系统均衡交互策略[J]. 电力系统自动化, 2018, 42(4): 142-150, 207. Wu Lilan, Jing Zhaoxia, Wu Qinghua, et al.Equilibrium strategies for integrated energy systems based on stackelberg game model[J]. Automation of Electric Power Systems, 2018, 42(4): 142-150, 207. [14] Sheikhi A, Rayati M, Bahrami S, et al.Integrated demand side management game in smart energy hubs[J]. IEEE Transactions on Smart Grid, 2015, 6(2): 675-683. [15] 陈玥, 魏韡, 刘锋, 等. 基于CES型效用函数的热—电市场消费者最优决策[J]. 电力系统自动化, 2018, 42(13): 118-126. Chen Yue, Wei Wei, Liu Feng, et al.CES utility function based consumer optimal decision making in heat-power market[J]. Automation of Electric Power Systems, 2018, 42(13): 118-126. [16] 方宇娟, 魏韡, 梅生伟, 等. 考虑节点边际价格的热电联产机组主从博弈竞价策略[J]. 控制理论与应用, 2018, 35(5): 682-687. Fang Yujuan, Wei Wei, Mei Shengwei, et al.Stackelberg game strategy for combined heat power unit considering locational marginal prices[J]. Control Theory and Applications, 2018, 35(5): 682-687. [17] 史君海, 朱新坚, 曹广益. 光伏-氢能自主发电系统稳态建模与分析[J]. 系统仿真学报, 2008, 20(7): 1884-1886, 1944. Shi Junhai, Zhu Xinjian, Cao Guangyi.Model and analysis of PV-hydrogen autonomy power system[J]. Journal of System Simulation, 2008, 20(7): 1884-1886, 1944. [18] 孔令国, 蔡国伟, 李龙飞, 等. 风光氢综合能源系统在线能量调控策略与实验平台搭建[J]. 电工技术学报, 2018, 33(14): 3371-3384. Kong Lingguo, Cai Guowei, Li Longfei, et al.Online energy control strategy and experimental platform of integrated energy system of wind, photovoltaic and hydrogen[J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3371-3384. [19] 李彦哲, 郭小嘉, 董海鹰, 等. 风/光/储微电网混合储能系统容量优化配置[J/OL]. 电力系统及其自动化学报: 1-8[2020-02-21]. Li Yanzhe, Guo Xiaojia, Dong Haiying, et al.Optimal capacity configuration of wind/PV/storage hybrid energy storage system in microgrid[J/OL]. Proceedings of the CSU-EPSA: 1-8[2020-02-21]. [20] Wang W, Wang S.Optimal operation strategy of power systems with renewable generations via coordinated control of hydrogen consumption[C]// Proceedings of the 8th Asia-Pacific Power and Energy Engineering Conference, Suzhou, China, 2016, DOI: 10.1201/620131-22. [21] Farrukh K, Ibrahim D, Marc A R.Analysis and assessment of an integrated hydrogen energy system[J]. International Journal of Hydrogen Energy, 2016, 41(19): 7960-7967. [22] Nasim H, Alireza N.Assessment and multi-criteria optimization of a solar and biomass-based multi-generation system: thermodynamic, exergoeconomic and exergoenvironmental aspects[J]. Energy Conversion and Management, 2019, 195: 788-797. [23] 李国军, 袁铁江, 孙谊媊, 等. 风电-氢储能与煤化工多能耦合系统全寿命周期经济性评估[J]. 电工技术学报, 2017, 32(21): 132-142. Li Guojun, Yuan Tiejiang, Sun Yiqian, et al.Full life cycle economic evaluation of wind power-hydrogen energy storage and coal chemical multi-functional coupling system[J]. Transactions of China Electrotechnical Society, 2017, 32(21): 132-142. [24] 袁铁江, 李国军, 张增强, 等. 风电—氢储能与煤化工多能耦合系统设备投资规划优化建模[J]. 电工技术学报, 2016, 31(14): 21-30. Yuan Tiejiang, Li Guojun, Zhang Zengqiang, et al.Optimal modeling on equipment investment planning of wind power-hydrogen energy storage and coal chemical pluripotent coupling system[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 21-30. [25] Zhang Xianjun, Karady G G, Ariaratnam S T.Optimal allocation of CHPbased distributed generation on urban energy distribution networks[J]. IEEE Transactions on Sustainable Energy, 2013, 5(1): 246-253. [26] Zhang Xianjun, Karady G G, Piratla K R, et al.Network capacity assessment of combined heat and power-based distributed; generation in urban energy infrastructures[J]. IEEE Transactions on Smart Grid, 2013, 4(4): 2131-2138. [27] 高乾恒, 黄帅飞, 李二超, 等. 市场环境下含氢储能的售电公司优化调度[J]. 电力建设, 2019, 40(4): 42-48. Gao Qianheng, Huang Shuaifei, Li Erchao, et al.Optimal dispatching of electricity retailers considering hydrogen storage in the electricity market[J]. Electric Power Construction, 2019, 40(4): 42-48. |
|
|
|