|
|
Fault Identification Method of MMC-HVDC Line Based on Sequential Overlapping Derivative Transform |
Shu Hongchun, Dai Yue, An Na, Tian Xincui, Wang Guangxue |
Faculty of Electric Power Engineering Kunming University of Science and Technology Kunming 650500 China |
|
|
Abstract In the high voltage direct current transmission based on modular multilevel converter (MMC) system, identifying line faults efficiently and reliably was one of the important guarantees for the safe and economic operation of the system. In order to identify line faults quickly and reliably, an internal and external fault identification method based on sequential overlapping derivative(SOD) transform was proposed. This paper first analyzes the physical boundary formed by the MMC equivalent impedance model, which has a strong attenuation effect on high frequency components, the start voltage caused by the line fault changes steeply when amplitude is large and the time-domin waveform isshowen shaking violently;the the start voltage caused by the external fault changes gently and amplitude is small. Secondly, the SOD transformation is used to transform the fault voltage and current. The converted voltage and current signal are multiplied to obtain SP, and K is defined as the maximum value of the absolute value of SP, and the internal and external faults are determined according to the K value. The MMC-HVDC system simulation model is built on PSCAD/EMTDC. The simulation results show that the method , which has good quick action, certain resistance to transition resistance and strong applicability ,can reliably and accurately identify internal faults and external faults.
|
Received: 22 November 2019
|
|
|
|
|
[1] Marquardt R. Stronmrichterschaltungen mit verteilten erginesspeichern: German, DE10103031A1[P].2001-01-24. [2] 徐政, 薛英林, 张哲任. 大容量架空线柔性直流输电关键技术及前景展望[J]. 中国电机工程学报. 2014, 34(29): 5051-5062.Xu Zheng, Xue Yinglin, Zhang Zheren.VSC-HVDC technology suitable for bulk power overhead line transmission[J]. Proceedings of the CSEE, 2014, 34(29): 5051-5062. [3] 汤广福, 贺之渊, 庞辉. 柔性直流输电工程技术研究、应用及发展[J]. 电力系统自动化, 2013, 37(15): 3-14. Tang Guangfu, He Zhiyuan, Pang Hui. Research, application and development of VSC-HVDC engineering technology[J]. Automation of Electric Power Systems, 2013, 37(15) :3-14. [4] 张建坡, 赵成勇, 孙海峰, 等. 模块化多电平换流器改进拓扑结构及其应用[J]. 电工技术学报, 2014, 29(8): 173-179.Zhang Jianpo, Zhao Chengyong, Sun Haifeng, et al. Improved topology of modular multilevel converter and application[J]. Transactions of China Electrote-chnical Society, 2014, 29(8): 173-179. [5] 赵成勇, 许建中, 李探. 模块化多电平换流器直流输电建模技术[M]. 1版. 北京:中国电力出版社, 2017. [6] 吴婧, 姚良忠, 王志冰, 等. 直流电网MMC拓扑及其直流故障电流阻断方法研究[J]. 中国电机工程学报, 2015, 35(11): 2681-2694.Wu Jing, Yao Liangzhong, Wang Zhibing, et al. The study of MMC topologies and their DC fault current blocking capacities in DC grid[J]. Proceedings of the CSEE, 2015, 35(11): 2681-2694. [7] 张建坡, 赵成勇. MMC-HVDC直流侧故障特性仿真分析[J]. 电力自动化设备, 2014, 34(7): 32-37.Zhang Jianpo, Zhao Chengyong. Simulation and analysis of DC-link fault characteristics for MMC-HVDC[J]. Electric Power Automation Equipment, 2014, 34(7): 32-37. [8] 宁连营, 邰能灵, 郑晓冬, 等. 基于自定义差分电流的MMC-HVDC输电线路纵联保护[J]. 电力系统自动化, 2017, 41(17): 87-93, 133.Ning Lianying, Tai Nengling, Zheng Xiaodong, et al. Pilot protection for MMC-HVDC transmission line based on custom difference current[J]. Automation of Electric Power Systems, 2017, 41(17): 87-93, 133. [9] 罗永捷, 徐罗那, 熊小伏, 等. MMC-MTDC系统直流单极对地短路故障保护策略[J]. 电工技术学报, 2017, 32(1): 107-115. Luo Yongjie,Xu Luona,Xiong Xiaofu,et al. Pole-to-ground DC fault protection of MMC-MTDC systems[J]. Transactions of China Electrotechnical Society, 2013, 43(1): 98-106. [10] 王帅, 毕天姝, 贾科. 基于小波时间熵的MMC-HVDC架空线路单极接地故障检测方法[J]. 电网技术, 2016, 40(7): 2179-2185.Wang Shuai, Bi Tianshu, Jia Ke. Wavelet entropy based single pole grounding fault detection approach for MMC-HVDC overhead lines[J]. Power System Technology, 2016, 40(7): 2179-2185. [11] 戴志辉, 刘雪燕, 黄敏, 等. 基于相似度比较的环状柔直配电网线路单极接地故障保护[J]. 电力系统自动化, 2019, 43(23): 107-115. Dai Zhihui, Liu Xueyan, Huang Min, et al. Similarity comparison based single-pole grounding fault protection for line in ring-shaped flexible DC distribution network[J]. Automation of Electric Power Systems, 2019, 43(23): 107-115. [12] 宁连营, 邰能灵, 郑晓冬, 等.基于单端暂态电流的MMC-HVDC输电线路保护方案研究[J]. 中国电机工程学报, 2017, 37(17): 5010-5017, 5220.Ning Lianying, Tai Nengling, Zheng Xiaodong, et al. Research on MMC-HVDC transmission line protection scheme based on one terminal transient current[J]. Proceedings of the CSEE, 2017, 37(17): 5010-5017, 5220. [13] 张峻榤, 林卫星, 文劲宇. 基于直流电压变化率的直流电网直流故障保护[J]. 南方电网技术, 2017, 11(1): 14-22.Zhang Junjie,Lin Weixing ,Wen Jinyu. DC fault protection based on change rate of DC voltage in DC grid[J]. Southern Power System Technology, 2017, 11(1): 14-22. [14] 宋国兵, 王婷, 张晨浩, 等. 利用健全极MMC注入特征信号的直流线路故障性质判别方法[J].电工技术学报, 2019, 34(5): 994-1003.Song Guobing, Wang Ting, Zhang Chenhao, et al. DC Line fault identification based on characteristic signal injection using the MMC of sound pole[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 994-1003. [15] Ikhide M, Tennakoon S, Griffiths A, et al.Fault detection in multi-terminal modular multilevel Converter (MMC) based high voltage DC (HVDC) transmission system[C]//2015 50th International Universities Power Engineering Conference (UPEC), Stoke on Trent, UK, 2015: 10.1109/UPEC.2015.739887. [16] 何佳伟, 李斌, 李晔, 等. 多端柔性直流电网快速方向纵联保护方案[J]. 中国电机工程学报, 2017, 37(23): 6878-6887, 7078.He Jiawei, Li Bin, Li Ye, et al. A fast directional pilot protection scheme for the MMC-based MTDC grid[J]. Proceedings of the CSEE, 2017, 37(23): 6878-6887, 7078. [17] 徐政. 柔性直流输电系统[M]. 2版. 北京: 机械工业出版社, 2016. [18] 王奎, 郑泽东, 李永东. 基于新型模块化多电平变换器的五电平PWM整流器[J]. 电工技术学报. 2011, 26(5): 34-38.Wang Kui, Zheng Zedong, Li Yongdong. A five-level PWM rectifier based on new modular multilevel converter[J]. Transactions of China Electrotechnical Society, 2011, 26(5): 34-38. [19] 苏见燊, 郭敬东, 金涛. 柔性直流电网中直流故障特性分析及线路故障重启策略[J]. 电工技术学报, 2019, 34(增刊1): 352-359.Su Jianwei, Guo Jingdong, Jin Tao. Analysis of DC fault characteristics and line fault restart strategy in flexible DC grid[J]. Transactions of China Electrotec-hnical Society, 2019, 34(S1): 352-359. [20] 姚骏, 谭义, 裴金鑫, 等. 模块化多电平变流器高压直流输电系统直流故障改进控制策略[J]. 电工技术学报, 2018, 33(14): 3306-3318.Yao Jun, Tan Yi, Pei Jinxin, et al. Improved DC fault control strategy for modular multilevel converter HVDC transmission system[J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3306-3318. [21] 薛英林, 徐政, 张哲任, 等. MMC-HVDC换流器阻抗频率特性分析[J]. 中国电机工程学报, 2014, 34(24): 4040-4048.Xue Yinglin, Xu Zheng, Zhang Zheren, et al. Analysis of impedance frequency characteristics of MMC-HVDC converter[J]. Proceedings of the CSEE, 2014, 34(24): 4040-4048. [22] 赵成勇, 陈晓芳, 曹春刚, 等. 模块化多电平换流器HVDC直流侧故障控制保护策略[J]. 电力系统自动化, 2011, 35(23): 82-87.Zhao Chengyong, Chen Xiaofang, Cao Chungang, et al. Control and protection strategies for MMC-HVDC under DC faults[J]. Automation of Electric Power Systems, 2011, 35(23): 82-87. [23] Dina Mourad Hafez, Elsayed Hassan Shehab Eldin, Abdu Aziz Mahmoud Abdu Alaziz. A novel unit protective relaying concept based on current signal sequential overlapping derivative transform: Two sides fed transmission line application[J]. Ain Shams Engineering Journal, 2012, 3(3): 267-277. [24] 董新洲, 雷傲宇, 汤兰西, 等. 行波特性分析及行波差动保护技术挑战与展望[J]. 电力系统自动化, 2018, 42(19): 184-191.Dong Xinzhou, Lei Aoyu, Tang Xilan, et al. Analysis of traveling wave characteristics and challenges and prospects of traveling wave differential protection technology[J]. Automation of Electric Power Systems, 2018, 42(19): 184-191. |
|
|
|