|
|
A Method of Locating the Power System Subsynchronous Oscillation Source Unit with Grid-Connected PMSG Using Deep Transfer Learning |
Chen Jian1, Du Wenjuan2, Wang Haifeng1,2 |
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China; 2. College of Electrical Engineering Sichuan University Chengdu 610065 China |
|
|
Abstract With increasing penetration of new energy power electronic devices, the induced mechanism of the subsynchronous oscillation problem of power systems has become more complicated. In order to locate the unit that induces subsynchronous oscillation in time, a method for locating sub-synchronous oscillation sources based on deep transfer learning is proposed. The method first builds a simulation system based on the open-loop mode resonance theory, and obtains training data samples in the simulation system. Second, it uses convolutional neural networks(CNN) to extract the characteristics of the oscillation source and establish a training localization model. Finally, the training model is transferred to the actual situation through transfer learning, and to realize the application of the location model. In order to verify the effectiveness of the proposed method, this paper designs a simulation system example of a power system with direct-drive generators connected to the grid. The test results show that the proposed method has the advantages of high location accuracy and convenient online application, compared with the traditional eigenvalue analysis method. Besides, this method can give the identification result in a short time, which lay a foundation for realizing the online identification of the oscillation source.
|
Received: 06 December 2019
|
|
|
|
|
[1] 肖湘宁, 罗超, 廖坤玉. 新能源电力系统次同步振荡问题研究综述[J]. 电工技术学报, 2017, 32(6): 85-97. Xiao Xiangning, Luo Chao, Liao Kunyu. Review of the research on subsynchronous oscillation issues in electric power system with renewable energy sources[J]. Transactions of China Electrotechnical Society, 2017, 32(6): 85-97. [2] 谢小荣, 刘华坤, 贺静波, 等. 直驱风电机组风电场与交流电网相互作用引发次同步振荡的机理与特性分析[J]. 中国电机工程学报, 2016, 36(9): 2366-2372.Xie Xiaorong, Liu Huakun, He Jingbo, et al. Mechanism and characteristics of subsynchronous oscillation caused by the interaction between full-converter wind turbines and AC systems[J]. Proceedings of the CSEE, 2016, 36(9): 2366-2372. [3] 张学广, 邱望明, 方冉, 等.基于变流器改进控制的双馈风电机组SSO抑制方法[J/OL]. 电机与控制学报, 2020(2), https://doi.org/10.15938/j.emc.2020. 02.001.Zhang Xueguang, Qiu Wangming, Fang Ran, et al. SSO mitigation method of DFIG based on improved control of converter[J/OL]. Electric Machines and Control, 2020(2), https://doi.org/10.15938/j.emc.2020.02.001. [4] 王伟胜, 张冲, 何国庆, 等. 大规模风电场并网系统次同步振荡研究综述[J]. 电网技术, 2017, 41(4): 1050-1060.Wang Weisheng, Zhang Chong, He Guoqing, et al. Overview of research on subsynchronous oscillations in large-scale wind farm integrated system[J]. Power System Technology, 2017, 41(4): 1050-1060. [5] Du Wenjuan, Chen Xiao, Wang Haifeng, et al.Power system electromechanical oscillation modes as affected by dynamic interactions from grid-connected PMSGs for wind power generation[J]. IEEE Transactions on Sustainable Energy, 2017, 8(3): 1301-1312. [6] 王洋, 杜文娟, 王海风. 基于开环子系统模式信息的次同步谐振机理研究[J].电工技术学报, 2019, 34(24): 5209-5220.Wang Yang, Du Wenjuan, Wang Haifeng. Mechanism study of subsynchronous resonance based on open-loop modal information[J]. Transactions of China Electrotechnical Society, 2019, 34(24): 5209-5220. [7] 任必兴, 杜文娟, 王海风. UPFC与系统的强动态交互对机电振荡模式的影响[J]. 电工技术学报, 2018, 33(11): 2520-2534.Ren Bixing, Du Wenjuan, Wang Haifeng. Impact of strong dynamic interaction between UPFC and system on electromechanical oscillation mode[J]. Transactions of China Electrotechnical Society, 2018, 33(11): 2520-2534. [8] 任必兴, 杜文娟, 王海风. 静止同步补偿器与直驱永磁风机的次同步控制交互研究[J]. 电工技术学报, 2018, 33(24): 5884-5896.Ren Bixing, Du Wenjuan, Wang Haifeng. Analysis on sub-synchronous control interaction between static synchronous compensator and permanent magnet synchronous generator[J]. Transactions of China Electrotechnical Society, 2018, 33(24): 5884-5896. [9] Liu Huakun, Xie Xiaorong, Zhang Chuanyu, et al.Quantitative SSR analysis of series compensated DFIG-based wind farms using aggregated RLC circuit model[J]. IEEE Transactions on Power Systems, 2017, 32(1): 474-483. [10] Du Wenjuan, Fu Qiang, Wang Haifeng, et al.Concept of modal repulsion for examining the subsynchronous oscillations caused by wind farms in power systems[J]. IEEE Transactions on Power Systems, 2019, 34(1): 518-526. [11] Piyasinghe Lakshan, Miao Zhixin, Khazaei Javad, et al.Impedance model-based SSR analysis for TCSC compensated type-3 wind energy delivery systems[J]. IEEE Transactions on Sustainable Energy, 2015, 6(1):179-187. [12] Xie Xiaorong, Liu Huakun, Han Yingduo.SEDC's ability to stabilize SSR: a case study on a practical series-compensated power system[J]. IEEE Transactions on Power Systems, 2014, 29(6): 3092-3101. [13] 李鹏瀚, 王杰, 吴飞. 双馈风电机组次同步控制相互作用的反馈线性化滑模变结构抑制[J]. 电工技术学报, 2019, 34(17): 3661-3671.Li Penghan, Wang Jie, Wu Fei. Sub-synchronous control interaction mitigation for DFIGs by sliding mode control strategy based on feedback linearization[J]. Transactions of China Electrotechnical Society, 2019, 34(17): 3661-3671. [14] Ren Wei, Larsen E.A refined frequency scan approach to sub-synchronous control interaction (SSCI) study of wind farms[J]. IEEE Transactions on Power Systems, 2016, 31(5): 3904-3912. [15] Gao Benfeng, Hu Yunting, Song Ruihua, et al.Impact of DFIG-based wind farm integration on sub-synchronous torsional interaction between HVDC and thermal generators[J]. IET Generation, Transmission & Distribution, 2018, 12(7): 3913-3923. [16] Mohammadpour H A, Santi E.SSR damping controller design and optimal placement in rotor-Side and grid-side converters of series-compensated DFIG-based wind farm[J]. IEEE Transactions on Sustainable Energy, 2015, 6(2): 388-399. [17] Ghafouri M, Karaagac U, Mahseredjian J, et al.SSCI damping controller design for series-compensated DFIG-based wind parks considering implementation challenges[J]. IEEE Transactions on Power Systems, 2019, 34(4): 2644-2653. [18] Zhang Jian, Xiao Xiangning, Zhang Peng, et al.Suppressing intermittent subsynchronous oscillation via subsynchronous modulation of reactive current[J]. IEEE Transactions on Power Delivery, 2015, 30(5): 2321-2330. [19] Moharana A, Varma R K, Seethapathy R.SSR alleviation by STATCOM in induction-generator-based wind farm connected to series compensated line[J]. IEEE Transactions on Sustainable Energy, 2014, 5(3): 947-957. [20] El-Moursi M S, Bak-Jensen B, Abdel-Rahman M H. Novel STATCOM controller for mitigating SSR and damping power system oscillations in a series compensated wind park[J]. IEEE Transactions on Power Electronics, 2010, 25(2): 429-441. [21] Fan Lingling, Miao Zhixin.Mitigating SSR using DFIG-based wind generation[J]. IEEE Transactions on Sustainable Energy, 2012, 3(3): 349-358. [22] Chen Lei, Zhao Wei, Wang Fuping.An interharmonic phasor and frequency estimator for subsynchronous oscillation identification and monitoring[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(6): 1714-1723. [23] 谢小荣, 刘华坤, 贺静波, 等. 电力系统新型振荡问题浅析[J].中国电机工程学报, 2018, 38(10): 2821-2828, 3133.Xie Xiaorong, Liu Huakun, He Jingbo, et al. On new oscillation issues of power systems[J]. Proceedings of the CSEE, 2018, 38(10): 2821-2828, 3133. [24] 王茂海, 孙昊. 强迫功率振荡源的在线定位分析技术[J]. 中国电机工程学报, 2014, 34(34): 6209-6215.Wang Maohai, Sun Hao. An analysis method for forced power oscillation source detection[J]. Proceedings of the CSEE, 2014, 34(34): 6209-6215. [25] Shu Yinbiao, Zhou Xiaoxin, Li Wenfeng.Analysis of low frequency oscillation and source location in power systems[J]. CSEE of Journal of Power and Energy Systems, 2018, 4(1): 58-66. [26] 陈磊, 王文婕, 王茂海, 等. 利用暂态能量流的次同步强迫振荡扰动源定位及阻尼评估[J]. 电力系统自动化, 2016, 40(19): 1-8.Chen Lei, Wang Wenjie, Wang Maohai, et al. Disturbance source location of subsychronous forced oscillation and damping evaluation using transient energy flow[J]. Automation of Electric Power systems, 2016, 40(19): 1-8. [27] Xie Xiaorong, Zhan Ying, Jan S, et al.Identifying the source of subsynchronous control interaction via wide-area monitoring of sub/super-synchronous power flows[J]. IEEE Transactions on Power Delivery, 2019, DOI: 10.1109/TPWRD.2019.2963336. [28] 许璞轩. 风电汇集区域次同步频率分量的传播路径与扰动源定位研究[D]. 北京: 华北电力大学, 2018. [29] Pan Sinno Jialin, Yang Qiang.A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10):1345-1359. [30] Long Mingsheng, Wang Jianmin, Ding Guiguang, et al.Adaptation regularization: a general framework for transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(5): 1076-1089. [31] 龙明盛. 迁移学习问题与方法研究[D]. 北京: 清华大学, 2014. [32] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016. [33] George D, Joana N, Kampff A R.T-SNE visualization of large-scale neural recordings[J]. Neural Computation, 2018, 30(7): 1750-1774. [34] Florian T, Andreas V, Robert E, et al.Efficient database generation for data-driven security assessment of power systems[J]. IEEE Transactions on Power Systems, 2019, DOI: 10.1109/TPWRS.2018. 2890769. |
|
|
|