|
|
Analytical Calculation of Switching Loss of Single-Phase Neutral Point Clamped H-Bridge Cascaded Inverters Based on SVPWM |
Yuan Jingxin1, Zhu Junjie1, Nie Ziling1, Ye Weiwei1, Jia Yingjie1, Dong Lei2 |
1. National Key Laboratory of Science and Technology on Vessel Integrated Power System Naval University of Engineering Wuhan 430033 China; 2. Military Representative Office of Naval Equipment Departments in Shanghai and Ningbo Ningbo 315000 China |
|
|
Abstract In order to optimize the performance of single-phase neutral point clamped (NPC) H-bridge cascaded inverter, the calculation method of switching loss based on pulse-shifting space vector pulse width modulation (SVPWM) voltage-sharing modulation is analyzed. To solve the problem that the effective switching frequency and control frequency are different, and the switching action is scattered and irregular, a new method based on the pulse-shifting SVPWM voltage-sharing modulation is proposed. The total switching loss calculation method directly calculates the sum of all switching transient losses. Aiming at the uncertainty of balancing voltage redundancy vector action, a maximum estimation method is proposed to estimate the switching transient losses. The simulation results show that the maximum and minimum errors of the calculated and actual switching losses are 9.55% and 1.29% respectively. The maximum errors of the experimental results and the theoretical values are less than 10%, which shows that the analytical expressions are more accurate.
|
Received: 26 November 2019
|
|
|
|
|
[1] 马伟明, 肖飞, 聂世雄. 电磁发射系统中电力电子技术的应用与发展[J]. 电工技术学报, 2016, 31(19): 1-10. Ma Weiming, Xiao Fei, Nie Shixiong.Applications and development of power electronics in electromagnetic launch system[J]. Transactions of China Electrotechnical Society, 2016, 31(19): 1-10. [2] 张琦, 李江江, 孙向东, 等. 单相级联七电平逆变器拓扑结构及其控制方法[J].电工技术学报, 2019, 34(18): 3843-3853. Zhang Qi, Li Jiangjiang, Sun Xiangdong, et al.Topology and control method of single-phase cascaded seven-level inverter[J]. Transactions of China Electrotechnical Society, 2019, 34(18): 3843-3853. [3] 陈仲, 孙健博, 章修齐, 等. 级联型逆变器载波周期脉冲调整的功率均衡方法及特性分析[J]. 电工技术学报, 2019, 34(22): 4761-4771. Chen Zhong, Sun Jianbo, Zhang Xiuqi, et al.Power balance method and characteristic analysis based on carrier period pulse adjustment for cascaded inverter[J]. Transactions of China Electrotechnical Society, 2019, 34(22): 4761-4771. [4] Tolbert L M, Peng F Z, Habetler T G.Multilevel converters for large electric drives[J]. IEEE Transactions on Industry Applications, 2002, 35(1): 36-44. [5] Zhu Junjie, Sun Xingfa, Nie Ziling, et al.Synchronous control strategy of dual five-level converters based on the improved SVPWM[J]. IET Power Electronics, 2018, 11(14): 2311-2318. [6] 陈息坤, 李婷娜. 基于控制自由度组合的简化多电平空间矢量脉宽调制控制策略[J]. 电工技术学报, 2019, 34(22): 4781-4794. Chen Xikun, Li Tingna.A kind of simplified multilevel space vector pulse width modulation control strategy based on control degrees of freedom combination[J]. Transactions of China Electrote-chnical Society, 2019, 34(22): 4781-4794. [7] Panagiotis K, Konstantinos P, Antonios K, et al.A single-phase nine-level inverter for renewable energy systems employing model predictive control[J]. Energy Conversion and Management, 2015, 89: 427-437. [8] Cui Dongdong, Ge Qiongxuan.A novel hybrid voltage balance method for five-level diode-clamped converters[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6020-6031. [9] 李卫超, 马伟明, 汪光森. 中点钳位型H桥级联单相逆变器新型空间矢量脉宽调制方法[J]. 中国电机工程学报, 2014, 34(30): 5313-5319. Li Weichao, Ma Weiming, Wang Guangsen, et al.A novel SVPWM method for single phase casecaded NPC H-bridge inverter[J]. Proceedings of the CSEE,2014, 34(30): 5313-5319. [10] 林城美, 王公宝, 汪光森. 基于脉冲跳变的空间矢量脉冲宽度调制策略[J]. 电机与控制学报, 2016, 20(1): 43-51. Lin Chengmei, Wang Gongbao, Wang Guangsen, et al.Novel spacevector pulse width modulation based on pulse shifting[J]. Electric Machinesand Control, 2016, 20(1): 43-51. [11] 舒泽亮, 马伟天, 柳明. 中点钳位型H桥级联单相变换器均压SVPWM最优工作点转移路径研究[J]. 中国电机工程学报, 2016, 36(13): 3565-3572. Shu Zeliang, Ma Weitian, Liu Ming.An optimal SVPWM transition path for voltage equalization in NPC cascade H-bridge single-phase inverters[J]. Proceedings of the CSEE,2016, 36(13): 3565-3572. [12] Lin Hongjian, Zhu Leilei, Yin Tao, et al.An optimal-path SVPWM algorithm with mutual DC voltages balancing capacity for three-module cascaded multilevel converter[C]// 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Shenzhen, 2018: 1-5. [13] 柳明. 单相三电平H桥多模块级联变换器SVPWM算法研究[D]. 成都: 西南交通大学, 2017. [14] Lin Hongjian, Shu Zeliang, He Xiaoqiong, et al.N-D SVPWM with DC voltage balancing and vector smooth transition algorithm for cascaded multilevel converter[J]. IEEE Transactions on Industrial Electronics, 2017, 65(5):3837-3847. [15] Mirizadeh A, Baroogh F A, Gheydi M, et al.Evaluation of conduction and switching losses in cascaded multilevel inverters[C]//2017 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, 2017: 124-127. [16] Andler D, Kouro S, Perez M, et al.Switching loss analysis of modulation methods used in neutral point clamped converters[C]//2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, 2009: 2565-2571. [17] 胡锐, 陈权, 胡存刚. 基于动态DSVPWM的三电平逆变器热可靠性研究[J]. 电力电子技术, 2019, 53(6): 87-89, 107. Hu Rui, Chen Quan, Hu Cungang.Study on thermal reliability of three-level inverter based on dynamic DSVPWM[J]. Power Electronics, 2019, 53(6): 87-89, 107. [18] Alemi P, Lee D, Analysis of semiconductor power losses in M-level NPC inverters[C]//2013 International Conference on Electrical Machines and Systems (ICEMS), Busan, 2013: 1513-1519. [19] 景巍, 谭国俊, 叶宗彬. 大功率三电平变频器损耗计算及散热分析[J].电工技术学报, 2011, 26(2): 134-140. Jing Wei, Tan Guojun, Ye Zongbin.Losses calculation and heat dissipation analysis of high-power three-level converters[J]. Transactions of China Electrot-echnical Society, 2011, 26(2):134-140. [20] 孟庆云. 大容量NPC若干关键问题研究[D]. 武汉: 海军工程大学, 2010. [21] Dieckerhoff S, Bernet S, Krug D.Power loss-oriented evaluation of high voltage IGBTs and multilevel converters in transformerless traction applications[J]. IEEE Transactions on Power Electronics, 2005, 20(6): 1328-1336. |
|
|
|