|
|
Research on Rural Photovoltaic Trading Pattern Based on Price-Based Demand Response under Marketization Environment of Distributed Generation |
Tu Qingyu1, Miao Shihong1, Zhang Di1, Li Lixing1, Zhao Jian2 |
1. State Key Laboratory of Advanced Electromagnetic Engineering and Technology Hubei Electric Power Security and High Efficiency Key Laboratory School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China; 2. State Grid Henan Electric Power Company Electric Power Research Institute Zhengzhou 450052 China |
|
|
Abstract At present,the low degree of rural photovoltaic marketization makes its construction rely heavily on the support of national poverty alleviation funds.In order to promote the process that rural photovoltaic achieves independent revenue,it is necessary to propose a proper rural photovoltaic market-oriented trading pattern.To this end,a price-based demand response trading pattern for rural photovoltaic is proposed in this paper to improve photovoltaic sales revenue and local consumption rate.Firstly,the main behaviors of the transaction-related entities were analyzed,and then trading modes under active and non-active participation of users were proposed.Secondly,on account of the characteristics of photovoltaic power supply,the pricing strategy for photovoltaic generators was proposed.On this basis,considering the active and non-active participation of power users in the transactions,and further considering the two strategies which include the fixed price and the peak-valley price that the power grid may adopt,the response model of power users were established respectively.Finally,based on actual data of a photovoltaic poverty alleviation project in a township,simulation was conducted and the results verified the effectiveness of the proposed trading pattern.
|
Received: 29 October 2019
|
|
|
|
|
[1] 国家能源局,国务院扶贫办.关于下达“十三五”第一批光伏扶贫项目计划的通知(国能发新能[2017]91号)[Z].2017. [2] 中共中央.国务院关于实施乡村振兴战略的意见 [EB/OL].北京:新华社,2018[2018-02-04] http://www.gov.cn/zhengce/2018-02/04/content_5263807.htm?tdsourcetag=s_pctim_aiomsg. [3] 国务院扶贫办.光伏扶贫工作百问百答[EB/OL].北京:国务院扶贫办,2020[2020-01-14].http://www.cpad.gov.cn/art/2020/1/14/art_46_109981.html. [4] 国家发展改革委,国家能源局.关于开展分布式发电市场化交易试点的通知(发改能源[2017]1901号)[Z].2017. [5] 张迪,苗世洪,赵健,等.分布式发电市场化环境下扶贫光伏布点定容双层优化模型研究[J].电工技术学报,2019,34(10):1999-2010. Zhang Di,Miao Shihong,Zhao Jian,et al.A bi-level locating and sizing optimal model for poverty alleviation PVs considering the marketization environment of distributed generation[J].Transactions of China Electrotechnical Society,2019,34(10):1999-2010. [6] 史连军,庞博,刘敦楠,等.新电改下北京电力交易中心电力市场综合指数的交易分析[J].电力系统自动化,2019,43(6):163-170. Shi Lianjun,Pang Bo,Liu Dunnan,et al.Power market transaction analysis of index of Beijing Electric Power Exchange Center under new electri- city reform[J].Automation of Electric Power Systems,2019,43(6):163-170. [7] 李翔宇,赵冬梅.市场机制下多微电网多时间尺度优化调度研究[J/OL].电机与控制学报:1-10[2020- 03-26].http://kns.cnki.net/kcms/detail/23.1408.TM.20200117.1425.010.html. Li Xiangyu,Zhao Dongmei.Multi-time scale optimal scheduling strategy of multi-microgrid based on market mechanism[J/OL].Electric Machines and Control,1-10[2020-03-26].http://kns.cnki.net/kcms/ detail/23.1408.TM.20200117.1425.010.html. [8] Yu Mengmeng,Hong S H.Incentive-based demand response considering hierarchical electricity market:a stackelberg game approach[J].Applied Energy,2017,203:267-279. [9] Fotouhi Ghazvini M A,Faria P,Ramos S,et al.Incentive-based demand response programs designed by asset-light retail electricity providers for the day-ahead market[J].Energy,2015,82:786-799. [10] 徐帆,谢旭,施磊,等.电力中长期市场基数偏差电量处理方法分析[J].电力系统自动化,2019,43(12):186-206. Xu Fan,Xie Xu,Shi Lei,et al.Analysis on settlement method for unbalanced base generated energy in medium- and long-term power market[J].Automation of Electric Power Systems,2019,43(12):186-206. [11] 田力丹,张凯锋,耿建,等.大用户直购电中鲁宾斯坦恩模型贴现因子的泛化分析[J].电力系统自动化,2019,43(15):152-158. Tian Lidan,Zhang Kaifeng,Geng Jian,et al.Generalization analysis on discount factor of Rubinstein model for direct power purchase of large users[J].Automation of Electric Power Systems,2019,43(15):152-158. [12] 周大伟.农村电网配电自动化研究[D].北京:华北电力大学,2017. [13] 魏勇.农村居民消费行为变动及其制度成因研究——以重庆市为例[D].重庆:西南大学,2012. [14] 詹国辉.不完全契约、利益互动博弈与农村集体行动[J].世界农业,2019(8):64-70,127. Zhan Guohui.Incomplete contract,interest interaction game and rural collective action[J].World Agricu- lture,2019(8):64-70,127. [15] Azad S,Ghotbi E.A game equilibrium model of a retail electricity market with high penetration of small and mid-size renewable suppliers[J].The Electricity Journal,2017,30(5):22-29. [16] Belgana A,Rimal B P,Maier M.Open energy market strategies in microgrids:a stackelberg game approach based on a hybrid multiobjective evolutionary algorithm[J].IEEE Transactions on Smart Grid,2015,6(3):1243-1252. [17] 刘念,赵璟,王杰,等.基于合作博弈论的光伏微电网群交易模型[J].电工技术学报,2018,33(8):1903-1910. Liu Nian,Zhao Jing,Wang Jie,et al.A trading model of PV microgrid cluster based on cooperative game theory[J].Transactions of China Electrotechnical Society,2018,33(8):1903-1910. [18] 李力行,苗世洪,孙丹丹,等.多利益主体参与下主动配电网完全信息动态博弈行为[J].电工技术学报,2018,33(15):3499-3509. Li Lixing,Miao Shihong,Sun Dandan,et al.Dynamic games of complete information in active distribution network with multi-stakeholder partici- pation[J].Transactions of China Electrotechnical Society,2018,33(15):3499-3509. [19] 徐筝,孙宏斌,郭庆来.综合需求响应研究综述及展望[J].中国电机工程学报,2018,38(24):7194- 7205,7446. Xu Zheng,Sun Hongbin,Guo Qinglai.Review and prospect of integrated demand response[J].Pro- ceedings of the CSEE,2018,38(24):7194-7205,7446. [20] 刘志珍,杨勇,屈东明,等.基于分时电价的电动汽车群有序充电策略研究[J].电机与控制学报,2017,21(10):1-7. Liu Zhizhen,Yang Yong,Qu Dongming,et al.Coordinated charging strategy for electric vehicle aggregator based on time-of-use price[J].Electric Machines and Control,2017,21(10):1-7. [21] 王蓓蓓.面向智能电网的用户需求响应特性和能力研究综述[J].中国电机工程学报,2014,34(22):3654-3663. Wang Beibei.Research on consumers' response characterics and ability under smart grid:a literatures survey[J].Proceedings of the CSEE,2014,34(22):3654-3663. [22] Chen Zexing,Zhang Yongjun,Tang Wenhu,et al.Generic modelling and optimal day-ahead dispatch of micro-energy system considering the price-based integrated demand response[J].Energy,2019,176:171-183. [23] 徐青山,刘梦佳,戴蔚莺,等.计及用户响应不确定性的可中断负荷储蓄机制[J].电工技术学报,2019,34(15):3198-3208. Xu Qingshan,Liu Mengjia,Dai Weiying,et al.Interruptible load based on deposit mechanism considering uncertainty of customer behavior[J].Transactions of China Electrotechnical Society,2019,34(15):3198-3208. [24] 王毅,张宁,康重庆,等.电力用户行为模型:基本概念与研究框架[J].电工技术学报,2019,34(10):2056-2068. Wang Yi,Zhang Ning,Kang Chongqing,et al.Electrical consumer behavior model:basic concept and research framework[J].Transactions of China Electrotechnical Society,2019,34(10):2056-2068. [25] Albadi M H,El-Saadany E F.A summary of demand response in electricity markets[J].Electric Power Systems Research,2008,78(11):1989-1996. [26] 李晅,马瑞,罗阳.基于Stackelberg博弈的微网价格型需求响应及供电定价优化[J].电力系统保护与控制,2017,45(5):88-95. Li Xuan,Ma Rui,Luo Yang.Price-based demand response of micro-grid and optimal pricing strategy based on Stackelberg game[J].Power System Protection and Control,2017,45(5):88-95. [27] Neves D,Pina A,Silva C A.Demand response modeling:a comparison between tools[J].Applied Energy,2015,146:288-297. [28] Cortés-Arcos T,Bernal-Agustín J L,Dufo-López R,et al.Multi-objective demand response to real-time prices (RTP) using a task scheduling methodology[J].Energy,2017,138:19-31. [29] Asadinejad A,Tomsovic K.Optimal use of incentive and price based demand response to reduce costs and price volatility[J].Electric Power Systems Research,2017,144:215-223. [30] Zhou Baorong,Huang Tingcheng,Zhang Yongjun.Reliability analysis on microgrid considering incentive demand response[J].Automation of Electric Power Systems,2017,41(13):70-78. [31] 江苏能源监管办.江苏能源监管办关于《江苏省分布式发电市场化交易规则(征求意见稿)》公开征求意见的公告[EB/OL].江苏:江苏能源监管办,2019 [2019-09-12].http://jsb.nea.gov.cn/news/2019-9/2019912123434.htm. [32] 阮文骏,王蓓蓓,李扬,等.峰谷分时电价下的用户响应行为研究[J].电网技术,2012,36(7):86-93. Ruan Wenjun,Wang Beibei,Li Yang,et al.Customer response behavior in time-of-use price[J].Power System Technology,2012,36(7):86-93. [33] 孙宇军,王岩,王蓓蓓,等.考虑需求响应不确定性的多时间尺度源荷互动决策方法[J].电力系统自动化,2018,42(2):106-113. Sun Yujun,Wang Yan,Wang Beibei,et al.Multi- time scale decision method for source-load interaction considering demand response uncertainty[J].Auto- mation of Electric Power System,2018,42(2):106-113. [34] 曾丹,姚建国,杨胜春,等.计及价格型负荷响应不确定性的概率潮流计算[J].电力系统自动化,2015,39(20):66-71. Zeng Dan,Yao Jianguo,Yang Shengchun,et al.Probabilistic load flow calculation considering price- elasticity load uncertainties[J].Automation of Electric Power Systems,2015,39(20):66-71. [35] 朱永胜,王杰,瞿博阳,等.采用基于分解的多目标进化算法的电力环境经济调度[J].电网技术,2014,38(6):1577-1584. Zhu Yongsheng,Wang Jie,Qu Boyang,et al. Environmental economic dispatch adopting multi- objective evolutionary algorithm based on decom- position[J].Power System Technology,2014,38(6):1577-1584. |
|
|
|