|
|
A Review of Current Distribution in Electromagnetic Railguns |
Ruan Jinghui1,2, Chen Lixue1,2, Xia Shengguo1,2, Wang Zengji1,2, Li Lidong1,2 |
1. Key Laboratory of Pulsed Power Technology Ministry of Education Huazhong University of Science and Technology Wuhan 430074 China; 2. State Key Laboratory of Advanced Electromagnetic Engineering and Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China |
|
|
Abstract The current distribution characteristics of electromagnetic railguns are closely related to its launch performance. Excessive current density in local areas will lead to current erosion and wear of armature and rail, interface melting deposition, transition arcs, etc., which could seriously affect the launch stability of armature and projectile, and do damage to rail and insulation of the bore. In this paper, three physical effects that determine the current distribution (skin effect, proximity effect, and velocity skin effect) are first described. Based on this, relevant research on the current distribution characteristics of electromagnetic railguns at home and abroad is summarized. The influence of the state of the pivot rail interface, the pivot rail material, the pivot rail structure, and the driving current on the current distribution are analyzed. The advantages of the saddle C-shaped armature in improving current distribution are proposed. Finally, some measures for optimizing the current distribution are summarized , which can provide technical support for the engineering application of electromagnetic orbit launch.
|
Received: 21 November 2019
|
|
|
|
|
[1] 李军, 严萍, 袁伟群. 电磁轨道炮发射技术的发展与现状[J]. 高电压技术, 2014, 40(4): 1052-1064. Li Jun, Yan Ping, Yuan Weiqun.Electromagnetic gun technology and its development[J]. High Voltage Engineering, 2014, 40(4): 1052-1064. [2] Marshall R A, Wang Y.Railguns: their science and technology[M]. Beijing: China Machine Press, 2004. [3] 李超, 鲁军勇, 马伟明, 等. 电磁发射用多级混合储能充电策略优化[J]. 电工技术学报, 2017, 32(13): 118-124. Li Chao, Lu Junyong, Ma Weiming, et al.Charging strategy amelioration of multilevel hybrid energy storage for electromagnetic launch[J]. Transactions of China Electrotechnical Society, 2017, 32(13): 118-124. [4] 马山刚, 于歆杰, 李臻. 用于电磁发射的电感储能型脉冲电源的研究现状综述[J]. 电工技术学报, 2015, 30(24): 222-228, 236. Ma Shangang, Yu Xinjie, Li Zhen.A review of the current research situation of inductive pulsed-power supplies for electromagnetic launch[J]. Transactions of China Electrotechnical Society, 2015, 30(24): 222-228, 236. [5] 马伟明, 肖飞, 聂世雄. 电磁发射系统中电力电子技术的应用与发展[J]. 电工技术学报, 2016, 31(19): 1-10. Ma Weiming, Xiao Fei, Nie Shixiong.Applications and development of power electronics in electromagnetic launch system[J]. Transactions of China Electrotechnical Society, 2016, 31(19): 1-10. [6] 刘旭堃, 于歆杰, 刘秀成. 电容储能型脉冲电源分时分段触发策略自动计算方法[J]. 电工技术学报, 2016, 31(11): 186-193. Liu Xukun, Yu Xinjie, Liu Xiucheng.An automatic calculation method for the triggering strategy of the capacitive pulsed-power supply[J]. Transactions of China Electrotechnical Society, 2016, 31(11): 186-193. [7] 刘旭堃, 于歆杰, 刘秀成, 等. 电磁轨道炮运行阶段系统发射效率和电枢出膛动能研究[J]. 电工技术学报, 2017, 32(3): 210-217. Liu Xukun, Yu Xinjie, Liu Xiucheng, et al.Researches on the system launch efficiency and the armature muzzle kinetic energy of a constructed electromagnetic railgun[J]. Transactions of China Electrotechnical Society, 2017, 32(3): 210-217. [8] Stefani F, Merrill R.Experiments to measure melt-wave erosion in railgun armatures[J]. IEEE Transactions on Magnetics, 2003, 39(1): 188-192. [9] Trevor Watt, Francis Stefani.The effect of current and speed on perimeter erosion in recovered armatures[J]. IEEE Transactions on Magnetics, 2005, 41(1): 448-452. [10] Siopis M J, Neu R W.Wear at high sliding speeds and high contact pressures[J]. Wear, 2015, 342: 356-363. [11] Xia Shengguo, Hu Yuyang, Chen Lixue, et al.Experimental studies on melt erosion at rail-armature contact of rail launcher in current range of 10-20 kA/mm[J]. IEEE Transactions on Plasma Science, 2017, 45(7): 1667-1672. [12] Stefani F, Merrill R, Watt T.Numerical modeling of melt-wave erosion in two-dimensional block armatures[J]. IEEE Transactions on Magnetics, 2005, 41(1): 437-441. [13] Benton T, Stefani F, Satapathy S, et al.Numerical modeling of melt-wave erosion in conductor[J]. IEEE Transactions on Magnetics, 2003, 39(1): 129-133. [14] Johnson A J.Elastic dynamics of sliding electrical contacts under extreme conditions[D]. New York: Cornell University, 2008. [15] Paul B Parks.Current melt-wave model for transitioning solid armature[J]. Journal of Applied Physics, 1990, 67(7): 3511-3516. [16] Leslie C Woods.The current melt-wave model[J]. IEEE Transactions on Magnetics, 1997, 33: 152-156. [17] Trevor E James.Current wave and magnetic saw-effect phenomena in solid armatures[J]. IEEE Transactions on Magnetics, 1995, 31(1): 622-627. [18] Stefani F, Levinson S, Satapathy S, et al.Electrodynamic transition in solid armature railguns[J]. IEEE Transactions on Magnetics, 2001, 37(1): 101-105. [19] Satapathy S, Vanicek H.Down-slope contact transition in railguns[J]. IEEE Transactions on Magnetics, 2007, 43(1): 402-407. [20] Barber J P, Bauer D P, Jamison K, et al.A survey of armature transition mechanisms[J]. IEEE Transactions on Magnetics, 2003, 39(1): 47-51. [21] Trevor Watt, Francis Stefani, Mark Crawford, et al.Investigation of damage to solid-armature railguns at startup[J]. IEEE Transactions on Magnetics, 2007, 43(1): 214-218. [22] Trevor E James, David C James.Contact pressure distribution and transition in solid armatures[J]. IEEE Transactions on Magnetics, 2001, 37(1): 81-85. [23] Chadee Persad.Railgun tribology—chemical reactions between contacts[J]. IEEE Transactions on Magnetics, 2007, 43(1): 391-395. [24] Bhag Singh Guru, Hüseyin R Hiziroğlu.电磁场与电磁波[M]. 周克定, 张肃文, 董天临, 等译. 北京: 机械工业出版社, 2005. [25] Fredrick J Young, William F Hughes.Rail and armature current distributions in electromagnetic launchers[J]. IEEE Transactions on Magnetics, 1982, 18(1): 33-41. [26] Long G C.Fundamental limits to the velocity of solid armatures in railguns[D]. Austin: The University of Texas at Austin, 1987. [27] John P Barber, Yuri A Dreizin.Model of contact transitioning with "realistic" armature-rail interface[J]. IEEE Transactions on Magnetics, 1995, 31(1): 96-100. [28] John P Barber, Antonios Challita.Velocity effects on metal armature contact transition[J]. IEEE Transactions on Magnetics, 1993, 29(1): 733-738. [29] Marco Angeli, Ermanno Cardelli, Bruno Azzerboni.Velocity skin-effect transition conditions on metal-on-metal sliding contacts in muzzle-fed railguns[J]. IEEE Transactions on Magnetics, 1997, 33(1): 37-42. [30] Thomas G Engel, Jesse M Neri, Michael J Veracka.Characterization of the velocity skin effect in the surface layer of a railgun sliding contact[J]. IEEE Transactions on Magnetics, 2008, 44(7): 1837-1844. [31] 李湘平, 鲁军勇, 李玉, 等. 电磁发射弹丸膛内磁场分布特性的三维数值分析[J]. 电机与控制学报, 2018, 22(8): 34-40. Li Xiangping, Lu Junyong, Li Yu, et al.3-D numerical analysis of distribution characteristics of electromagnetic launcher projectile in-bore magnetic field[J]. Electric Machines and Control, 2018, 22(8): 34-40. [32] Chen Lixue, He Junjia, Xia Shengguo, et al.Study on the tail structure of a C-type armature in the nonequal-cross-section cantilever model[J]. IEEE Transaction on Plasma Science, 2013, 41(5): 1498-1502. [33] 冯登, 夏胜国, 陈立学, 等. 轨道电磁发射装置中电枢装配接触压力分布的不均匀特性[J]. 高电压技术, 2015, 41(6): 1873-1878. Feng Deng, Xia Shengguo, Chen Lixue, et al.Non-uniformity of contact pressure distribution in armature assembly for railguns[J]. High Voltage Engineering, 2015, 41(6): 1873-1878. [34] Li Chengxian, Xia Shengguo, Chen Lixue, et al.Simulations on current distribution in railgun under imperfect contact conditions[J]. IEEE Transactions on Plasma Science, 2019, 47(5): 2264-2268. [35] Jones H N, Neri J M, Boyer C N, et al.Pulsed current static electrical contact experiment[J]. IEEE Transactions on Magnetics, 2007, 43(1): 343-348. [36] Yovanovich M M.Four decades of research on thermal contact, gap, and joint resistance in microelectronics[J]. IEEE Transactions on Components and Packaging Technologies, 2005, 28(2): 182-206. [37] 徐凯. 大口径电枢起始阶段电流分布影响因素的仿真研究[D]. 武汉: 华中科技大学, 2017. [38] Cooper K P, Jones H N, Meger R A.Analysis of railgun barrel material[J]. IEEE Transactions on Magnetics, 2007, 43(1): 120-125. [39] Persad C, Yeoh A, Prabhu G, et al.On the nature of the armature-rail interface: liquid metal effects[J]. IEEE Transactions on Magnetics, 1997, 33(1): 140-145. [40] Meger R A, Cairns R, Doulass S, et al.EM gun bore life experiments at Naval research laboratory[J]. IEEE Transactions on Plasma Science, 2012, 41(5): 1533-1537. [41] Meger R A, Cooper K P, Jones H N, et al.Analysis of rail surfaces from a multishot railgun[J]. IEEE Transactions on Magnetics, 2005, 41(1): 211-213. [42] Chadee Persad, Zachira Castro.Railgun tribology: characterization and control of multishot wear debris[J]. IEEE Transactions on Magnetics, 2007, 43(1): 173-177. [43] 胡宇洋. 电磁发射小口径电枢电流熔蚀特性研究[D].武汉: 华中科技大学, 2017. [44] 陈立学, 何俊佳, 夏胜国, 等. 电磁轨道炮轨道电阻率和轨道高度对电流上升沿阶段电枢边沿熔蚀的影响[J]. 高电压技术, 2014, 40(4): 1071-1076. Chen Lixue, He Junjia, Xia Shengguo, et al.Influence of rail resistivity and rail height on armature edge erosion at current ramp-up in solid armature railgun[J]. High Voltage Engineering, 2014, 40(4): 1071-1076. [45] 肖铮. 电磁发射用C型电枢的有限元仿真计算研究[D]. 武汉: 华中科技大学, 2007. [46] Rip L, Satapathy S, Hsieh K.Effect of geometry change on the current density distribution in C-shaped armatures[J]. IEEE Transactions on Magnetics, 2003, 39(1): 72-75. [47] Jin Longwen, Lei Bin, Zhang Qian, et al.Electromechanical performance of rails with different cross-sectional shapes in railgun[J]. IEEE Transactions on Plasma Science, 2015, 43(5): 1220-1224. [48] 袁建生, 李军, 左鹏, 等. 不同截面形状轨道的电磁炮电流分布特性分析[C]//中国电工技术学会学术年会, 北京, 2011: 65-71. [49] 乔志明, 雷彬, 向红军, 等. 增强型电磁轨道炮发展现状及技术特点[J]. 飞航导弹, 2016(10): 28-31. Qiao Zhiming, Lei Bin, Xiang Hongjun, et al.Development and technology of augmented railgun[J]. Winged Missiles Journal, 2016(10): 28-31. [50] 孙立强, 袁伟群, 严萍. 电磁轨道发射装置仿真与试验[J]. 电机与控制学报, 2008, 12(2): 143-146. Sun Liqiang, Yuan Weiqun, Yan Ping.Simulation and experiment study of EM railgun launcher[J]. Electric Machines and Control, 2008, 12(2): 143-146. [51] Chen Lixue, He Junjia, Xiao Zheng, et al.Augmentation of current ramp-down contact pressure in C-shaped armature railguns[J]. IEEE Transactions on Plasma Science, 2011, 39(1): 48-52. [52] Tang Liangliang, He Junjia, Chen Lixue, et al.Study of some influencing factors of armature current distribution at current ramp-up stage in railgun[J]. IEEE Transactions on Plasma Science, 2015, 43(5): 1585-1591. [53] Li Chengxian, Chen Lixue, Xia Shengguo, et al.Simulations on saddle armature with concave arc surface in small caliber railgun[J]. IEEE Transactions on Plasma Science, 2019, 47(5): 2347-2353. [54] Pavlov A D.Improvement of electromagnetic railgun barrel performance and lifetime by method of interfaces and augmented projectiles[D]. California: California Polytechnic State University, 2013. [55] 雷彬, 杜传通, 吕庆敖, 等. 石墨烯涂层对电磁轨道炮性能影响的试验研究[J]. 高电压技术, 2019, 45(6): 1929-1935. Lei Bin, Du Chuantong, Lü Qingao, et al.Experimental study on the influence of graphene coating on the performance of electromagnetic railgun[J]. High Voltage Engineering, 2019, 45(6): 1929-1935. |
|
|
|