|
|
Passivity-Based Control Strategy of Quasi Z-Source Three-Level Grid-Connected Inverter |
Cheng Qiming1, Jiang Chang1, Shen Lei1, Cheng Yinman2 |
1. Shanghai Key Laboratory Power Station Automation Technology Laboratory Shanghai University of Electric Power Shanghai 200090 China; 2. North Power Supply Branch Shanghai Electric Power Company Shanghai 200041 China |
|
|
Abstract In this paper, passivity-based control (PBC) is introduced into a new quasi-Z source three-level grid-connected inverter. This method can achieve good grid-connected control without linearizing the inverter system. Firstly, the working principle of the new inverter topology is discussed, the overall mathematical model of the new inverter is derived, and the passive Euler-Lagrange (EL) equation form is given. Then, it is verified that the inverter system has strict passive characteristics. By adopting the appropriate damping injection and control rate, the inverter system is accelerated to reach the desired point, the PBC law of decoupling grid-connected current is obtained, and the PBC system of the new inverter is designed. This system can drive the switch action of the new inverter in combination with SPWM modulation algorithm. Finally, the results on the Matlab/Simulink software platform and hardware platform show that the PBC strategy based on EL model has good dynamic characteristics and strong robustness.
|
Received: 08 September 2019
|
|
|
|
|
[1] Rajakaruna S.Steady-state analysis and designing impedance network of Z-source inverters[J]. IEEE Transactions on Industrial Electronics, 2010, 57(1): 2483-2491. [2] 曾正, 杨欢, 赵荣祥, 等. 多功能并网逆变器研究综述[J]. 电力自动化设备, 2012, 32(8): 5-15. Zeng Zheng, Yang Huan, Zhao Rongxiang, et al.Overview of multi-functional grid-connected inver- ters[J]. Electric Power Automation Equipment, 2012, 32(8): 5-15. [3] Peng Fangzheng.Z-source inverter[J]. IEEE Transa- ctions on Industry Applications, 2003, 39(2): 504-510. [4] 汤雨, 谢少军, 张超华. 改进型Z源逆变器[J]. 中国电机工程学报, 2009, 29(30): 28-34. Tang Yu, Xie Shaojun, Zhang Chaohua.Improved Z-source inverter[J]. Proceedings of the CSEE, 2009, 29(30): 28-34. [5] Tang Yu, Xie Shaojun, Zhang Chaohua.Improved Z-source inverter with reduced Z-source capacitor voltage stress and soft-start capability[J]. IEEE Transactions on Power Electronics, 2009, 24(2): 409-415. [6] 蔡春伟, 曲延滨, 盛况. 增强型Z源逆变器[J]. 中国电机工程学报, 2011, 31(增刊1): 259-266. Cai Chunwei, Qu Yanbin, Sheng Kuang, et al.Enhanced Z-source inverter[J]. Proceedings of the CSEE, 2011, 31(S1): 259-266. [7] 周玉斐, 黄文新, 赵健伍, 等. 一种高升压比的Z源逆变器[J]. 电工技术学报, 2013, 28(9): 239-246. Zhou Yufei, Huang Wenxin, Zhao Jianwu, et al.A high gain Z-source inverter[J]. Transactions of China Electrotechnical Society, 2013, 28(9): 239-246. [8] 侯世英, 肖旭, 张闯, 等. 改进型Z源逆变器[J]. 电力自动化设备, 2011, 31(8): 24-28. Hou Shiying, Xiao Xu, Zhang Chuang, et al.Improved Z source inverter[J]. Electric Power Automation Equipment, 2011, 31(8): 24-28. [9] 徐聪, 程启明, 李明, 等. Z源逆变器及其多种改进拓扑结构的比较[J]. 电网技术, 2014, 38(10): 2926-2931. Xu Cong, Cheng Qiming, Li Ming, et al.A comparative simulation study on Z-source inverter and its various improvement topllogies[J]. Power System Technology, 2014, 38(10): 2926-2931. [10] 王久和, 黄立培, 杨秀媛. 三相电压型PWM整流器的无源性功率控制[J]. 中国电机工程学报, 2008, 28(21): 20-25. Wang Jiuhe, Huang Lipei, Yang Xiuyuan.Power control of three-phase Boost-type PWM rectifier based on passivity[J]. Proceedings of the CSEE, 2008, 28(21): 20-25. [11] 王久和, 穆小斌. 基于无源性的光伏并网逆变器电流控制[J]. 电工技术学报, 2012, 27(11): 176-182. Wang Jiuhe, Mu Xiaobin.Current control strategy of photovoltaic grid-connected inverter based on passivity[J]. Transactions of China Electrotechnical Society, 2012, 27(11): 176-182. [12] 陆翔, 谢运祥, 桂存兵. 基于无源和滑模变结构控制想结合的VIENNA整流器控制策略[J]. 电力自动化设备, 2014, 34(10): 110-115. Lu Xiang, Xie Yunxiang, Gui Cunbing.Passivity and sliding mode control based on a combination of VIENNA rectifiers[J]. Electric Power Automation Equipment, 2014, 34(10): 110-115. [13] 雷亚雄, 李建文, 李永刚. 基于准PR调节器电流双闭环LCL三相并网逆变器控制[J]. 电力系统保护与控制, 2014, 42(12): 44-50. Lei Yaxiong, Li Jianwen, Li Yonggang.Control strategy of three-phase LCL grid-connected inverter based on quasi-PR adjuster[J]. Power System Pro- tection and Control, 2014, 42(12): 44-50. [14] 黄天富, 石新春, 魏德冰, 等. 基于电流无差拍控制的三相光伏并网逆变器的研究[J]. 电力系统保护与控制, 2012, 40(11): 36-41. Huang Tianfu, Shi Xinchun, Wei Debin, et al.Study on three-phase photovoltaic grid-connected inverter based on current deadbeat control[J]. Power System Protection and Control, 2012, 40(11): 36-41. [15] Bo Xu, Xiao Hongran.Sliding mode control for three-phase quasi-Z-source inverter[J]. IEEE Access, 2018(6): 60318-60328. [16] 程启明, 张强, 程尹曼, 等. 基于PCHD模型的光伏Z源并网逆变器无源控制[J]. 高电压技术, 2016, 42(9): 2723-2732. Cheng Qiming, Zhang Qiang, Cheng Yinman, et al.Passivity based control of PV Z-source grid- connected inverter based on PCHD model[J]. High Voltage Engineering, 2016, 42(9): 2723-2732. [17] 钱甜甜, 苗世洪, 刘子文, 等. 基于PCHD模型的VSC-HVDC的无源控制与辅助改进滑模控制[J]. 电工技术学报, 2016, 31(3): 138-144. Qian Tiantian, Miao Shihong, Liu Ziwen, et al.Passive control and auxiliary sliding mode control strategy for VSC-HVDC system based on PCHD model[J]. Transactions of China Electrotechnical Society, 2016, 31(3): 138-144. [18] 王久和, 张巧杰, 李萍, 等. 基于PCHD模型的三相四线电压型PWM整流器无源控制[J]. 电工技术学报, 2015, 30(14): 354-361. Wang Jiuhe, Zhang Qiaojie, Li Ping, et al.Passivity based control of three-phase four-wire voltage source PWM rectifier based on PCHD model[J]. Transa- ctions of China Electrotechnical Society, 2015, 30(14): 354-361. [19] 程启明, 李涛, 程尹曼, 等. 基于受控耗散Hamiltonian系统模型的光伏准Z源T型三电平并网逆变器控制策略[J]. 电工技术学报, 2019, 34(8): 1718-1727. Cheng Qiming, Li Tao, Cheng Yinman, et al.Control strategy of PV quasi-Z-source T-type three-level inverter based on port controlled Hamiltonian with dissipation mode[J]. Transactions of China Electro- technical Society, 2019, 34(8): 1718-1727. [20] Lü Youdong, Yu Haisheng, Liu Xudong.Switching control of sliding mode and passive control for DC-link voltage of isolated shoot-through Z-source inverter[C]//Conference of Chinese Automation Congress (CAC), Xi'an, China, 2018: 2687-2692. |
|
|
|