|
|
Multi-Energy Microgrid Optimization Operation Model Considering Waste Disposal and Multi-Source Coordinated Energy Storage |
Teng Yun1, Wu Lei1, Leng Ouyang2, Chen Zhe3, Ge Weichun1 |
1. School of Electrical Engineering Shenyang University of Technology Shenyang 110870 China; 2. State Grid East Inner Mongolia Economic Research Institute Huhhot 010020 China; 3. Aalborg University Depth Energy Technology Aalborg DK-9220 Denmark |
|
|
Abstract Aiming at the problem of urban waste reduction in the “no waste city” plan, the multi-energy microgrid operation problem raised by full renewable energy supply, this paper proposes a coordinated energy storage based on multiple energy sources and is highly compatible Multi-energy microgrid optimized operation model for waste treatment facilities. First, the energy conversion process of waste pyrolysis and gasification is studied, and the power, heat, and gas energy output characteristics model of the waste treatment facility and the power balance characteristic model of the multi-energy microgrid connected to it are established, based on this, the garbage treatment is proposed multi-source integrated coordinated energy storage system (WDM-CCS); Then, study the economic model of garbage disposal and multi-energy microgrid operation, With the goal of minimizing the overall operating cost and maximizing the amount of waste disposal, the multi-energy microgrid optimization operation model of WDM-CCS is established. Finally, based on the operational data of multi-energy microgrid and garbage disposal facilities in a certain area in Northeast China, a multi-energy microgrid simulation model based on WDM-CCS is established. The simulation results show that compared with the traditional multi-energy micro-grid, the multi-energy micro-grid using WDM-CCS not only has better regulation ability and higher regenerative energy consumption, and can effectively improve waste disposal capacity.
|
Received: 16 January 2020
|
|
|
|
|
[1] 韩翠瀛. 创建“无废城市”推动行业加速转型[J]. 中国建材, 2019(7): 15. Han Cuiying.Create a "no waste city" to accelerate the transformation of the industry[J]. China Building Materials, 2019(7): 15. [2] 蒙天宇. “无废城市”建设的国际经验及启示[N]. 中国环境报, 2019-01-31(3) . [3] 胡楠, 柳溪, 赵娜娜, 等. 日本循环型社会建设对中国废物管理的启示[J]. 世界环境, 2018 (5) : 48-50. Hu Nan, Liu Xi, Zhao Nana, et al.Enlightenment of japan's recycling society construction on Chinese waste management[J]. World Environment, 2018(5): 48-50. [4] 滕云, 左浩, 李新, 等. 基于光伏储能分离配置的配电网电压薄弱性抑制方法[J]. 可再生能源, 2018. 36(8): 1158-1162. Teng Yun, Zuo Hao, Li Xin, et al.The separation of PV and energy storage’s characteristics of weakness inhibition in the distribution network nodes[J]. Renewable Energy, 2018, 36(8): 1158-1162. [5] 原凯, 李敬如, 宋毅, 等. 区域能源互联网综合评价技术综述与展望[J]. 电力系统自动化, 2019, 43(14): 41-52,64. Yuan Kai, Li Jingru, Song Yi, et al.Summary and prospect of comprehensive evaluation technology of regional energy internet[J]. Automating of Electric Power Systems, 2019, 43(14):41-52, 64. [6] Ren Hongbo, Gao Weijun.A MILP model for integrated plan and evaluation of distributed energy systems[J]. Applied Energy, 2010, 87(3): 1001-1014. [7] 周贤正, 陈玮, 郭创新.考虑供能可靠性与风光不确定性的城市多能源系统规划[J].电工技术学报, 2019, 34(17): 3672-3686. Zhou Xianzheng, Chen Wei, Guo Chuangxin.Urban multi-energy system planning considering energy supply reliability and scenery uncertainty[J]. Transactions of China Electrotechnical Society, 2019, 34(17): 3672-3686. [8] 滕云, 张铁岩, 陈哲. 多能源互联系统优化运行与控制技术研究现状与前景展望[J]. 可再生能源, 2018, 36(3): 467-474. Teng Yun, Zhang Tieyan, Chen Zhe.Research status and prospects of the optimization and operation of multi-energy interconnected systems[J]. Renewable Energy, 2018, 36(3): 467-474. [9] 袁国安. 生活垃圾热解气化技术应用现状与展望[J].环境与可持续发展, 2019, 44(4): 66-69. Yuan Guoan.Application status and prospects of domestic waste pyrolysis and gasification technology[J]. Environment and Sustainable Development, 2019, 44(4): 66-69. [10] 贾宏杰, 王丹, 徐宪东, 等. 区域综合能源系统若干问题研究[J]. 电力系统自动化, 2015, 39(7): 198-207. Jia Hongjie, Wang Dan, Xu Xiandong, et al.Research on some key problems related to integrated energy systems[J]. Automating of Electric Power Systems, 2015, 39(7): 198-207. [11] 卢志刚, 隋玉珊, 冯涛, 等. 考虑储热装置与碳捕集设备的风电消纳低碳经济调度[J]. 电工技术学报, 2016, 31(17): 41-51. Lu Zhigang, Sui Yusan, Feng Tao, et al.Low-carbon economic dispatch of wind power consumption considering heat storage devices and carbon capture equipment[J]. Transactions of China Electrotechnical Society, 2016, 31(17): 41-51. [12] 曾君, 徐冬冬, 刘俊峰, 等. 考虑负荷满意度的微电网运行多目标优化方法研究[J].中国电机工程学报, 2016, 36(12): 3325-3334. Zeng Jun, Xu Dongdong, Liu Junfeng, et al.Multi-objective optimal operation of microgrid considering dynamic loads[J]. Proceedings of the CSEE, 2016, 36(12): 3325-3334. [13] Dufo-Lopez R, Jose L, Javier C.Optimization of control strategies for stand-alone renewable energy systems with hydrogen storage[J]. Renewable Energy, 2007, 32: 1102-1126. [14] 孔令国, 蔡国伟, 陈冲, 等. 基于氢储能的主动型永磁直驱风电机组建模与并网控制[J]. 电工技术学报, 2017, 32(18): 276-285. Kong Lingguo, Cai Guowei, Chen Chong, et al.Modeling and grid control of active permanent magnet direct driven wind turbine based on hydrogen energy storage[J]. Transactions of china Electrotechnical Society, 2017, 32(18): 276-285. [15] 刘维康, 王丹, 余晓丹, 等. 考虑电气转换储能和可再生能源集成的微能源网多目标规划[J]. 电力系统自动化, 2018, 42(16): 11-20, 72,197-200. Liu Weikang, Wang Dan, Xu Xiaodan, et al. Multi-objective planning of micro-energy network considering the integration of electrical conversion energy storage and renewable energy[J]. Automating of Electric Power Systems, 2018, 42(16): 11-20, 72, 197-200. [16] 陈沼宇, 王丹, 贾宏杰, 等. 考虑P2G多源储能型微网日前最优经济调度策略研究[J]. 中国电机工程学报,2017, 37(11): 3067-3077. Chen Zhaoyu, Wang Dan, Jia Hongjie, et al.Research on optimal day-ahead economic dispatching strategy for microgrid considering P2G and multi-source energy storage system[J]. Proceedings of the CSEE, 2017, 37(11): 3067-3077. [17] 吴巍, 汪可友, 李国杰, 等. 提升风电消纳区间的鲁棒机组组合[J].电工技术学报, 2018, 33(3): 523-532. Wu Wei, Wang Keyou, Li Guojie, et al.Robust unit combination for improving wind power consumption interval[J]. Transactions of China Electrotechnical Society, 2018, 33(3): 523-532. [18] 陈柏翰, 冯伟, 孙凯, 等. 冷热电联供系统多元储能及孤岛运行优化调度方法[J]. 电工技术学报, 2019, 34(15): 3231-3243. Chen Bohan, Feng Wei, Sun Kai, et al.Optimal scheduling method for multiple energy storage and island operation of combined heat and cold power system[J]. Transactions of China Electrotechnical Society, 2019, 34(15): 3231-3243. [19] Correa J M, Farret F A, Canha L N, et al.An electrochemical-based fuel-cell model suitable for electrical engineering automation approach[J]. IEEE Transactions on Industrial Electronics, 2004, 51(5): 1103-1112. [20] 赵冬梅, 夏轩, 陶然. 含电转气的热电联产微网电/热综合储能优化配置[J]. 电力系统自动化, 2019, 43(17): 46-61. Zhao Dongmei, Xia Xuan, Tao Ran.Optimal configuration of micro-grid electricity/heat integrated energy storage for combined heat and power generation with electricity to gas[J]. Automating of Electric Power Systems, 2019, 43(17): 46-61. [21] 韩佶, 苗世洪, 李超, 等. 计及相关性的电-气-热综合能源系统概率最优能量流[J]. 电工技术学报, 2019, 34(5): 1055-1067. Han Ji, Miao Shihong, Li Chao, et al.Probabilistic optimal energy flow of electric-gas-heat integrated energy system considering correlation[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 1055-1067. [22] 任新伟, 徐建政. 改进细菌群体趋药性算法在无功优化中的应用[J]. 电力系统及其自动化学报, 2015, 27(5): 81-85. Ren Xinwei, Xu Jianzheng.Application of improved bacterial population chemotactic algorithm in reactive power optimization[J]. Journal of Electric Power Systems and Automation, 2015, 27(5): 81-85. [23] Lu Zhigang, Feng Tao, Li Xueping.Low-carbon emission/economic power dispatch using the multi-objective bacterial colony chemotaxis optimization algorithm considering carbon capture power plant[J]. International Journal of Electrical Power & Energy Systems, 2013, 53: 106-112. |
|
|
|