[1] 郭永芳, 黄凯, 李志刚. 基于短时搁置端电压压降的快速锂离子电池健康状态预测[J]. 电工技术学报, 2019, 34(19): 3968-3978.
Guo Yongfang, Huang Kai, Li Zhigang.Fast state of health prediction of lithium-ion battery based on terminal voltage drop during rest for short time[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 3968-3978.
[2] 谷苗, 夏超英, 田聪颖. 基于综合型卡尔曼滤波的锂离子电池荷电状态估算[J]. 电工技术学报, 2019, 34(2): 419-426.
Gu Miao, Xia Chaoying, Tian Congying.Li-ion battery state of charge estimation based on comprehensive Kalman filter[J]. Transactions of China Electrotechnical Society, 2019, 34(2): 419-426.
[3] 李晓宇, 徐佳宁, 胡泽徽, 等. 磷酸铁锂电池梯次利用健康特征参数提取方法[J]. 电工技术学报, 2018, 33(1): 9-16.
Li Xiaoyu, Xu Jianing, Hu Zehui, et al.The health parameter estimation method for LiFePO4 battery echelon use[J]. Transactions of China Electrotechnical Society, 2018, 33(1): 9-16.
[4] 刘伟, 吴海桑, 何志超, 等. 一种均衡考虑锂电池内部能量损耗和充电速度的多段恒流充电方法[J]. 电工技术学报, 2017, 32(9): 112-120.
Liu Wei, Wu Haisang, He Zhichao, et al.A multistage current charging method for Li-ion battery considering balance of internal consumption and charging speed[J]. Transactions of China Electrotechnical Society, 2017, 32(9): 112-120.
[5] 何志超. 锂离子动力电池的动态模型研究[D]. 北京: 清华大学, 2016.
[6] 何志超, 杨耕, 卢兰光, 等. 一种动力电池动态特性建模[J]. 电工技术学报, 2016, 31(11): 194-203.
He Zhichao, Yang Geng, Lu Languang, et al.A modeling method for power battery dynamics[J]. Transactions of China Electrotechnical Society, 2016, 31(11): 194-203.
[7] Zhang Q, White R E.Calendar life study of Li-ion pouch cells[J]. Journal of Power Sources, 2007, 173(2): 990-997.
[8] Zhang Q, White R E.Calendar life study of Li-ion pouch cells: Part 2: simulation[J]. Journal of Power Sources, 2008, 179(2): 785-792.
[9] 陈英杰. 锂离子动力电池工程模型及其参数估计问题研究[D]: 北京: 清华大学, 2019.
[10] 陈英杰, 杨耕, 祖海鹏, 等. 基于恒流实验的锂离子电池开路电压与内阻估计方法[J]. 电工技术学报, 2018, 33(17): 3976-3988.
Chen Yingjie, Yang Geng, Zu Haipeng, et al.An open circuit voltage and internal resistance estimation method of lithium-ion batteries with constant current tests[J]. Transactions of China Electrotechnical Society, 2018, 33(17): 3976-3988.
[11] 卫志农, 原康康, 成乐祥, 等. 基于多新息最小二乘算法的锂电池参数辨识[J]. 电力系统自动化, 2019, 43(15): 139-145.
Wei Zhinong, Yuan Kangkang, Cheng Lexiang, et al.Parameter identification of lithium-ion battery based on multi-innovation least squares algorithm[J]. Automation of Electric Power Systems, 2019, 43(15): 139-145.
[12] 韩雪冰. 车用锂离子电池机理模型与状态估计研究[D]. 北京: 清华大学, 2014.
[13] Han Xuebing, Ouyang Minggao, Lu Languang, et al.A comparative study of commercial lithium ion battery cycle life in electric vehicle: capacity loss estimation[J]. Journal of Power Sources, 2014, 268: 658-669.
[14] Aurbach D.Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries[J]. Journal of Power Sources, 2000, 89(2): 206-218.
[15] Pallavi V, Pascal M, Petr N.A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta, 2010, 55(22): 6332-6341.
[16] Aurbach D, Zinigrad E, Cohen Y, et al.A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions[J]. Solid State Ionics, 2002, 148(3-4): 405-416.
[17] Guo Dongxu, Yang Geng, Feng Xuning.Physics-based fractional-order model with simplified solid phase diffusion of lithium-ion battery[J]. Journal of Energy Storage, 2020, 30: 101404.
[18] Maheshwari A, Heck M, Santarelli M, et al.Cycle aging studies of lithium nickel manganese cobalt oxide-based batteries using electrochemical impedance spectroscopy[J]. Electrochimica Acta, 2018, 273: 235-348.
[19] 孙国强, 任佳琦, 成乐祥, 等. 基于分数阶阻抗模型的磷酸铁锂电池荷电状态估计[J].电力系统自动化, 2018, 42(23): 57-63.
Sun Guoqiang, Ren Jiaqi, Cheng Lexiang, et al.State of charge estimation of LiFePO4 battery based on fractional-order impedance model[J]. Automation of Electric Power Systems, 2018, 42(23): 57-63.
[20] 祖海鹏, 刘旭, 杨耕, 等. 锂离子电池静置下阶跃放电电流动态模型[J]. 电源学报, 2019, 17(2): 163-170.
[21] Liu Xu, Guo Dongxu, Chen Yingjie, et al.BP neural network model of lithium-ion phosphate battery based on step-discharge current response[C]// 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Shenzhen, 2018: 1-6. |