|
|
3D Temperature Field Reconstruction Method for Energy Storage System Based on Improved MRF-KFCM Effective Region Segmentation |
Pan Guobing1,2, Wang Jie1,2, Ouyang Jing1,2 |
1. Institute of Distributed Energy and Microgrid Zhejiang University of Technology Hangzhou 310023 China; 2. College of Mechanical Engineering Zhejiang University of Technology Hangzhou 310023 China |
|
|
Abstract Energy storage system is one of the core components of microgrid, and its thermal management is of great significance to the safety and stability of microgrid. The Infrared Thermal Imager cannot monitor the internal temperature filed of the battery stack, which is more important. Aiming at this problem, a 3D temperature field reconstruction method based on surface temperature field and virtual heat source has been proposed. The effective region is extracted by the segmentation algorithm and mapped to the surface temperature field by calibration. Then, the 3D temperature field of the battery stack is preliminarily reconstructed, and then the temperature of sub-unit is modified by virtual heat source. In order to depress the influence on the 3D reconstruction which caused by the inaccurate region segmentation of infrared image of battery stack, the Kernel-Based Fuzzy C-Means Clustering algorithm under the constraint of Markov Random Field has been improved. In this method, the preliminary effective region of the battery stack in the visible light image can obtained by Otsu algorithm, and assigning pixels to cluster with different target information weight, then the accurate position in the infrared image is obtained by registration. Experimental results show that the proposed method can reflect the variation trend and local difference of the internal temperature of the battery stack, and the accuracy can meet the practical application requirements.
|
Received: 25 November 2019
|
|
|
|
|
[1] 王成山, 武震, 李鹏. 微电网关键技术研究[J]. 电工技术学报, 2014, 29(2): 1-12. Wang Chengshan, Wu Zhen, Li Peng.Research on key technologies of microgrid[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 1-12. [2] 周林, 黄勇, 郭珂. 微电网储能技术研究综述[J]. 电力系统保护与控制, 2011, 39(7): 147-152. Zhou Lin, Huang Yong, Guo Ke.A survey of energy storage technology for micro grid[J]. Power System Protection and Control, 2011, 39(7): 147-152. [3] 赵卓立, 杨苹, 郑成立, 等. 微电网动态稳定性研究述评[J]. 电工技术学报, 2017, 32(10): 111-122. Zhao Zhuoli, Yang Ping, Zheng Chengli, et al.Review on dynamic stability research of microgrid[J]. Transactions of China Electrotechnical Society, 2017, 32(10): 111-122. [4] 戴兴建, 邓占峰, 刘刚, 等. 大容量先进飞轮储能电源技术发展状况[J].电工技术学报, 2011, 26(7): 133-140. Dai Xingjian, Deng Zhanfeng, Liu Gang, et al.Review on advanced flywheel energy storage system with large scale[J]. Transactions of China Electrotechnical Society, 2011, 26(7): 133-140. [5] 李建林, 马会萌, 惠东. 储能技术融合分布式可再生能源的现状及发展趋势[J]. 电工技术学报, 2016, 31(14): 1-10. Li Jianlin, Ma Huimeng, Hui Dong.Present development condition and trends of energy storage technology in the integration of distributed renewable energy[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 1-10. [6] 姚勇, 朱桂萍, 刘秀成. 电池储能系统在改善微电网电能质量中的应用[J]. 电工技术学报, 2012, 27(1): 85-89. Yao Yong, Zhu Guiping, Liu Xiucheng.Improvement of power quality of micro-grids by battery energy storage system[J]. Transactions of China Electrotechnical Society, 2012, 27(1): 85-89. [7] 许守平, 侯朝勇, 杨水丽. 一种适用于大容量储能技术的锂离子电池管理系统[J]. 储能科学与技术, 2016, 5(1): 69-77. Xu Shouping, Hou Chaoyong, Yang Shuili.A Li-ion battery management system for large-capacity energy storage[J]. Energy Storage Science and Technology, 2016, 5(1): 69-77. [8] Almeida C A L, Braga A P, Nascimento S, et al. Intelligent thermographic diagnostic applied to surge arresters: a new approach[J]. IEEE Transactions on Power Delivery, 2009, 24(2): 751-757. [9] 冯振新, 周东国, 江翼, 等. 基于改进MSER算法的电力设备红外故障区域提取方法[J]. 电力系统保护与控制, 2019, 47(05): 123-128. Feng Zhenxin, Zhou Dongguo, Jiang Yi, et al.Fault region extraction using improved MSER algorithm with application to the electrical system[J]. Power System Protection and Control, 2019, 47(5): 123-128. [10] Izadi S, Kim D, Hilliges O, et al.KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera[C]//Proceedings of the 24th annual ACM symposium on User interface software and technology. Santa Barbara, California, USA, 2011: 559-568. [11] Vidas S, Moghadam P, Bosse M.3D thermal mapping of building interiors using an RGB-D and thermal camera[J]. IEEE Sensors Journal, 2015, 15(2): 1145-1152. [12] 王晓松, 游峰, 张敏吉, 等. 集装箱式储能系统数值仿真模拟与优化[J]. 储能科学与技术, 2016, 5(4): 577-582. Wang Xiaosong, You Feng, Zhang Minji.Numerical simulation and parametric optimization on the container type energy storage system[J]. Energy Storage Science and Technology, 2016, 5(4): 577-582. [13] 史贵连, 李凯扬, 叶福丽. 基于自适应模拟退火算法的生物体三维温度场重构研究[J] 机械工程学报, 2016, 52(6): 166-173. Shi Guilian, Li Kaiyang, Ye Fuli.Research on 3D temperature field in biological tissue based on adaptive simulated annealing algorithm[J]. Journal of Mechanical Engineering, 2016, 52(6): 166-173. [14] 陆子凤. 红外热像仪的辐射定标和测温误差分析[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2010. [15] 郭立红, 郭汉洲, 杨词银, 等. 利用大气修正因子提高目标红外辐射特性测量精度[J]. 光学精密工程, 2016, 24(8): 1871-1877. Guo Lihong, Guo Hanzhou, Yang Ciyin, et al.Improvement of radiation measurement precision for target by using atmosphere-corrected coefficients[J]. Optics and Precision Engineering, 2016, 24(8): 1871-1877. [16] 吴越, 朱之贞, 方勇华, 等. 非制冷型长波红外光谱仪的辐射定标方法研究[J]. 光学学报, 2019, 39(9): 1-13. Wu Yue, Zhu Zhizhen, Fang Yonghua, et al.Research on radiation calibration method of uncooled long-wave infrared spectrometer[J]. Acta Optica Sinica, 2019, 39(9): 1-13. [17] 王华伟. 基于红外热成像的温度场测量关键技术研究[D]. 西安: 中国科学院研究生院(西安光学精密机械研究所), 2013. [18] 张敏, 于剑. 基于划分的模糊聚类算法[J]. 软件学报, 2004, 15(6): 858-868. Yu Jian.Fuzzy partitional clustering algorithms[J]. Journal of Software, 2004, 15(6): 858-868. |
|
|
|