|
|
Effect of Pulse Dielectric Barrier Discharge Plasma Modification on Breakdown Strength and Thermal Conductivity of BN/EP Composites |
Mi Yan1, Gou Jiaxi1, Liu Lulu1, Ge Xin1, Wan Hui2 |
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China; 2. Economic Research Institute of State Grid Jiangxi Electric Power Company Nanchang 330096 China |
|
|
Abstract To improve the compatibility of BN nanosheets (BNNSs) with epoxy resin (EP) matrix as well as the AC breakdown strength and thermal conductivity of BN/EP nanocomposites, BNNSs were hydroxylated by Ar+H2O bipolar nanosecond pulse dielectric barrier discharge (DBD) low temperature plasma at atmospheric pressure and then modified by silane coupling agent KH560 in this paper. X-ray photoelectron spectroscopy (XPS) shows that the hydroxyl content of the BNNSs surface increases nearly 2 times after plasma modification. Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) show that plasma modification enhances the dehydration condensation reaction of BNNSs with silane coupling agent, and the coating amount of silane coupling agent on the BNNSs surface increases by 45%. The thermal stimulation depolarization current (TSDC) test shows that the plasma and silane coupling agent modified composites have more deep traps than the silane coupling agent modified composites. The breakdown test shows that the AC breakdown strength of the composites after plasma modification is improved under different filling contents. The filling content of BNNSs increases from 10% to 20% while maintaining a certain insulation strength. Meanwhile, the thermal conductivity of the composites increases by 67% as the filling content increases from 10% (silane coupling agent treated) to 20% (plasma and silane coupling agent treated).
|
Received: 06 September 2019
|
|
|
|
|
[1] Huang Xingyi, Jiang Pingkai, Tanaka T.A review of dielectric polymer composites with high thermal conductivity[J]. IEEE Electrical Insulation Magazine, 2011, 27(4): 8-16. [2] Zhi Chunyi, Bando Y, Terao T, et al.Towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers[J]. Advanced Functional Materials, 2009, 19(12): 1857-1862. [3] Xu Yunsheng, Chung D D L, Mroz C. Thermally conducting aluminum nitride polymer-matrix com- posites[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(12): 1749-1757. [4] He Hong, Fu Renli, Han Yanchun, et al.High thermal conductive Si3N4 particle filled epoxy composites with a novel structure[J]. Journal of Electronic Packaging, 2007, 129(4): 469-472. [5] Yu Jinhong, Huang Xingyi, Wu Chao, et al.Inter- facial modification of boron nitride nanoplatelets for epoxy composites with improved thermal proper- ties[J]. Polymer, 2012, 53(2): 471-480. [6] 杜伯学, 孔晓晓, 肖萌, 等. 高导热聚合物基复合材料研究进展[J]. 电工技术学报, 2018, 33(14): 3149-3159. Du Boxue, Kong Xiaoxiao, Xiao Meng, et al.Advances in thermal performance of polymer-based composites[J]. Transactions of China Electro- technical Society, 2018, 33(14): 3149-3159. [7] Zhu Bailin, Ma Jeffery, Wu Jun, et al.Study on the properties of the epoxy-matrix composites filled with thermally conductive AlN and BN ceramic par- ticles[J]. Journal of Applied Polymer Science, 2010, 118(5): 2754-2764. [8] Chiang T H, Hsieh T E.A study of encapsulation resin containing hexagonal boron nitride (hBN) as inorganic filler[J]. Journal of Inorganic and Organo- metallic Polymers and Materials, 2006, 16(2): 175-183. [9] Marx P, Wanner A, Zhang Zucong, et al.Effect of interfacial polarization and water absorption on the dielectric properties of epoxy-nanocomposites[J]. Polymers, 2017, 9(6): 195. [10] Wang Zengbin, Iizuka T, Kozako M, et al.Deve- lopment of epoxy/BN composites with high thermal conductivity and sufficient dielectric breakdown strength part I-sample preparations and thermal conductivity[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(6): 1963-1972. [11] 田付强, 杨春, 何丽娟, 等. 聚合物/无机纳米复合电介质介电性能及其机理最新研究进展[J]. 电工技术学报, 2011, 26(3): 1-12. Tian Fuqiang, Yang Chun, He Lijuan, et al.Recent research advancement in dielectric properties and the corresponding mechanism of polymer/inorganic nano- composite[J]. Transactions of China Electrotechnical Society, 2011, 26(3): 1-12. [12] 高铭泽, 张沛红. 纳米SiO2/环氧树脂复合材料介电性与纳米粒子分散性关系[J]. 物理学报, 2016, 65(24): 192-199. Gao Mingze, Zhang Peihong.Relationship between dielectric properties and nanoparticle dispersion of nano-SiO2/epoxy composite[J]. Acta Physica Sinica, 2016, 65(24): 192-199. [13] 杨国清, 黎洋, 王德意, 等. 超支化聚酯改性纳米SiO2/环氧树脂的介电特性[J]. 电工技术学报, 2019, 34(5): 220-229. Yang Guoqing, Li Yang, Wang Deyi, et al.Dielectric properties of hyperbranched polyester modified nano- SiO2/epoxy resin[J]. Transactions of China Electro- technical Society, 2019, 34(5): 220-229. [14] 杜伯学, 韩晨磊, 李进, 等. 高压直流电缆聚乙烯绝缘材料研究现状[J]. 电工技术学报, 2019, 34(1): 179-191. Du Boxue, Han Chenlei, Li Jin, et al.Research status of polyethylene insulation for high voltage direct current cables[J]. Transactions of China Electro- technical Society, 2019, 34(1): 179-191. [15] Jesionowski T, Krysztafkiewicz A.Influence of silane coupling agents on surface properties of precipitated silicas[J]. Applied Surface Science, 2001, 172(1-2): 18-32. [16] Kim Y, Hwang S, So J I, et al.Treatment of atmospheric-pressure radio frequency plasma on boron nitride for improving thermal conductivity of polydimethylsiloxane composites[J]. Macromolecular Research, 2018, 26(10): 864-867. [17] Yu Bin, Xing Weiyi, Guo Wenwen, et al.Thermal exfoliation of hexagonal boron nitride for effective enhancements on thermal stability, flame retardancy and smoke suppression of epoxy resin nanocom- posites via sol-gel process[J]. Journal of Materials Chemistry A, 2016, 4(19): 7330-7340. [18] Kim K, Kim M, Hwang Y, et al.Chemically modified boron nitride-epoxy terminated dimethylsiloxane composite for improving the thermal conductivity[J]. Ceramics International, 2014, 40(1): 2047-2056. [19] Huang Xingyi, Zhi Chunyi, Jiang Pingkai, et al.Polyhedral oligosilsesquioxane-modified boron nitride nanotube based epoxy nanocomposites: an ideal dielectric material with high thermal conductivity[J]. Advanced Functional Materials, 2013, 23(14): 1824-1831. [20] Hou Jun, Li Guohua, Yang Na, et al.Preparation and characterization of surface modified boron nitride epoxy composites with enhanced thermal condu- ctivity[J]. RSC Advances, 2014, 4(83): 44282-44290. [21] 吴旭辉, 吴广宁, 杨雁, 等. 等离子体改性纳米粒子对聚酰亚胺复合薄膜陷阱特性影响[J]. 中国电机工程学报, 2018, 38(11): 3410-3418. Wu Xuhui, Wu Guangning, Yang Yan, et al.Influence of nanoparticle plasma modification on trap properties of polyimide composite films[J]. Pro- ceedings of the CSEE, 2018, 38(11): 3410-3418. [22] Shao Tao, Zhang Cheng, Long Kaihua, et al.Surface modification of polyimide films using unipolar nanosecond-pulse DBD in atmospheric air[J]. App- lied Surface Science, 2010, 256(12): 3888-3894. [23] Shao Tao, Yu Yang, Zhang Cheng, et al.Excitation of atmospheric pressure uniform dielectric barrier discharge using repetitive unipolar nanosecond-pulse generator[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(6): 1830-1837. [24] Yuan Hao, Wang Wenchun, Yang Dezheng, et al.Atmospheric air dielectric barrier discharge excited by nanosecond pulse and AC used for improving the hydrophilicity of aramid fibers[J]. Plasma Science and Technology, 2017, 19(12): 125401. [25] Wu Shuqun, Xu Haitao, Lu Xinpei, et al.Effect of pulse rising time of pulse DC voltage on atmospheric pressure non-equilibrium plasma[J]. Plasma Pro- cesses and Polymers, 2013, 10(2): 136-140. [26] Liu Yunfei, Su Chunqiang, Ren Xiang, et al.Experi- mental study on surface modification of PET films under bipolar nanosecond-pulse dielectric barrier discharge in atmospheric air[J]. Applied Surface Science, 2014, 313(18): 53-59. [27] Yang Dezheng, Yang Yang, Li Shouzhe, et al.A homogeneous dielectric barrier discharge plasma excited by a bipolar nanosecond pulse in nitrogen and air[J]. Plasma Sources Science and Technology, 2012, 21(3): 035004. [28] Park G, Lee H, Kim G, et al.Global model of He/O2 and Ar/O2 atmospheric pressure glow discharges[J]. Plasma Processes and Polymers, 2008, 5(6): 569-576. [29] Liu Dingxin, Sun Bowen, Iza F, et al.Main species and chemical pathways in cold atmospheric-pressure Ar+H2O plasmas[J]. Plasma Sources Science and Technology, 2017, 26(4): 045009. [30] Pakdel A, Bando Y, Golberg D.Plasma-assisted interface engineering of boron nitride nanostructure films[J]. ACS Nano, 2014, 8(10): 10631-10639. [31] Mi Yan, Wan Hui, Bian Changhao, et al.An MMC- based modular unipolar/bipolar high-voltage nanose- cond pulse generator with adjustable rise/fall time[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(2): 515-522. [32] 薛茹君. 无机纳米材料的表面修饰改性与物性研究[M]. 安徽: 合肥工业大学出版社, 2008. [33] GB/T 1408B/T 1408.1—2016 绝缘材料电气强度试验方法第1部分: 工频下试验[S]. 北京: 中国标准出版社, 2016. [34] 罗潘, 徐曼, 王绍辉, 等. MCM-41表面改性及MCM- 41/环氧树脂复合材料陷阱特性[J]. 电工技术学报, 2018, 33(10): 2245-2252. Luo Pan, Xu Man, Wang Shaohui, et al.MCM-41 surface modification and trap characteristic of MCM- 41/EP composites[J]. Transactions of China Electro- technical Society, 2018, 33(10): 2245-2252. [35] Seyhan A T, Göncü Y, Durukan O, et al.Silanization of boron nitride nanosheets (BNNSs) through micro- fluidization and their use for producing thermally conductive and electrically insulating polymer nano- composites[J]. Journal of Solid State Chemistry, 2017, 249: 98-107. [36] Tian Fuqiang, Bu Wenbin, Shi Linshuang, et al.Theory of modified thermally stimulated current and direct determination of trap level distribution[J]. Journal of Electrostatics, 2011, 69(1): 7-10. [37] 尹毅, 屠德民, 李明, 等. 用等温电流法研究自由基清除剂的作用机理——聚合物电老化陷阱理论的实验验证[J]. 中国电机工程学报, 2000, 20(3): 13-15. Yin Yi, Tu Demin, Li Ming, et al.Study on the action mechanism of the free radical scavenger with isothermal-current-decay method-an experimental verification of trap theory for electrical aging in polymer[J]. Proceedings of the CSEE, 2000, 20(3): 13-15. [38] Tanaka T.Dielectric nanocomposites with insulating properties[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(5): 914-928. [39] 吴子剑, 王晨, 张明艳, 等. 环氧树脂纳米复合材料界面及其对电性能影响分析[J]. 电工技术学报, 2018, 33(16): 3897-3905. Wu Zijian, Wang Chen, Zhang Mingyan, et al.Inter- face of epoxy resin composites, and its influence on electrical performance[J]. Transactions of China Electrotechnical Society, 2018, 33(16): 3897-3905. [40] Tuncer E, James D R, Sauers I, et al.On dielectric breakdown statistics[J]. Journal of Physics D: Applied Physics, 2006, 39(19): 4257-4268. [41] IEC/TC 56 Procedures for goodness-of-fit tests, confidence intervals and lower confidence limits for weibull distributed data[S]. New York: IEC, 2008. [42] 谢东日, 闵道敏, 刘文凤, 等. 介质击穿与界面区陷阱特性的关联[J]. 高电压技术, 2018, 44(2): 432-439. Xie Dongri, Min Daomin, Liu Wenfeng, et al.Cor- relation between dielectric breakdown and interface traps characteristics[J]. High Voltage Engineering, 2018, 44(2): 432-439. [43] 王威望, 李盛涛, 刘文凤. 聚合物纳米复合电介质的击穿性能[J]. 电工技术学报, 2017, 32(16): 25-36. Wang Weiwang, Li Shengtao, Liu Wenfeng.Diele- ctric breakdown of polymer nanocomposites[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 25-36. [44] Gu Junwei, Liang Chaobo, Dang Jing, et al.Ideal dielectric thermally conductive bismaleimide nanocom- posites filled with polyhedral oligomeric silsesqui- oxane functionalized nanosized boron nitride[J]. RSC Advances, 2016, 6(42): 35809-35814. |
|
|
|