|
|
Thermal Characteristics Analysis of Environmentally Friendly GIS Based on Multi-Field Coupling |
Niu Chunping1, Jiao Lulu1, Wang Xiaohua1, Yang Aijun1, Li Xuxu2 |
1. State Key Lab of Electrical Insulation for Power Equipment Xi’an Jiaotong University Xi’an 710049 China 2. Pinggao Group Co. Ltd Pingdingshan 467001 China |
|
|
Abstract Gas insulated metal-included switchgear (GIS) is an important switchgear equipment in the power system. Due to its small size and small heat-dissipation area, overheating problems cannot be ignored. Traditional GIS uses SF6 gas as insulation and arc extinguishing medium, while SF6 gas brings serious greenhouse effect. In recent years, GIS research on environmentally friendly gas has received extensive attention. Therefore, research on the thermal properties of environmentally friendly gas GIS is also urgent. In this paper, the thermal characteristics of the 126kV eco-friendly GIS isolating switch with CO2 as the insulating arc extinguishing gas was studied. The GIS model was subjected to steady-state thermal analysis through the coupling of electric-thermal-airflow field, and the temperature field of GIS was obtained. The distribution was compared with the temperature rise experiment results of GIS to verify the correctness of the thermal analysis model. Subsequently, the model was used to calculate the temperature field of the GIS isolation switch part filled with different gases, and the heat dissipation characteristics of SF6, CO2, N2 and N2 and C5F10O mixed gases at different pressures were compared. The results show that the SF6 gas at the same gas pressure is about 10K lower than the highest temperature of GIS filled with CO2 and N2. Mixing 10% C5F10O in N2 can reduce the temperature rise of GIS by 4.21K. The research in this paper can provide reference for the application of environmentally friendly gas in GIS.
|
Received: 16 August 2019
|
|
|
|
|
[1] 徐剑浩. 气体绝缘金属封闭开关设备[M]. 北京: 中国电力出版社, 2014. [2] 孙竹森, 兰剑. 环保型金属封闭开关设备的技术特点与发展趋势[J]. 中国电业(技术版), 2014(6): 53-56. Sun Zhusen, Lan Jian.Technical characteristics and development tendencies of environment-friendly switchgears[J]. China Electric Power(Technical Edition), 2014(6): 53-56. [3] 刘绍峻. GIS的热计算(IV)[J]. 华通技术, 1994(3): 7-14. [4] 郑迪, 王大志, 于林鑫, 等. 盘式永磁涡流驱动器的电磁-温度耦合解析模型[J]. 电工技术学报, 2019, 34(11): 2315-2323. Zheng Di, Wang Dazhi, Yu Linxin, et al.Electromagnetic-thermal analytical model of axial-flux permanent magnet eddy current driver[J]. Transactions of China Electrotechnical Society, 2019, 34(11): 2315-2323. [5] 姜志鹏, 周辉, 宋俊燕, 等. 干式空心电抗器温度场计算与试验分析[J]. 电工技术学报, 2017, 32(3): 218-224. Jiang Zhipeng, Zhou Hui, Song Junyan, et al.Temperature field calculation and experimental analysis of dry-type air-core reactor[J]. Transactions of China Electrotechnical Society, 2017, 32(3): 218-224. [6] 宋帆, 申春红, 林莘, 等. 800kV GIS 隔离开关磁场-温度场计算与分析[J]. 高电压技术, 2008, 34(7): 1383-1388. Song Fan, Shen Chunhong, Lin Xin, et al.Calculation and analysis on magneto-thermal fields of 800 kV GIS disconnector[J]. High Voltage Engineering, 2008, 34(7): 1383-1388. [7] 宁宇, 孙洪宇, 张伟, 等. GIS高压母线段间连接缝隙造成的过热分析[J]. 电工技术学报, 2017, 32(增刊1): 217-224. Ning Yu, Sun Hongyu, Zhang Wei, et al.Overheat analysis on the connection gap in GIS with the sections connected by bolts[J].Transactions of China Electrotechnical Society, 2017, 32(S1): 217-224. [8] 吴柏禧, 万珍平, 张昆, 等. 考虑温度场和流场的永磁同步电机折返型冷却水道设计[J]. 电工技术学报, 2019, 34(11): 2306-2314. Wu Boxi, Wan Zhenping, Zhang Kun, et al.Design of reentrant cooling channel in permanent magnet synchronous motor considering temperature field and flow field[J]. Transactions of China Electrotechnical Society, 2019, 34(11): 2306-2314. [9] 王小飞, 代颖, 罗建. 基于流固耦合的车用永磁同步电机水道设计与温度场分析[J]. 电工技术学报, 2019, 34(增刊1): 22-29. Wang Xiaofei, Dai Ying, Luo Jian.Waterway design and temperature field analysis of vehicle permanent magnet synchronous motor based on fluid-solid coupling[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 22-29. [10] Ansys Maxwell 16. Maxwell 16.0 Help Document[Z]. 2012. [11] 冯慈璋, 马西奎. 工程电磁场导论[M]. 北京: 高等教育出版社, 2000. [12] 雄信银. 发电厂电气部分[M]. 4版. 北京: 中国电力出版社, 2009. [13] GBT 11022—1999 高压开关设备和控制设备标准的共用技术要求[S]. 1999. [14] 杨世铭, 陶文铨. 传热学[M]. 北京: 高等教育出版社, 2006. [15] 王秉政, 江健武, 赵灵, 等. 高压开关柜接触发热温度场数值计算[J]. 高压电器, 2013, 49(12): 42-48. Wang Bingzheng, Jiang Jianwu, Zhao Ling, et al.Temperature field simulation of contact heating in high voltage switchgear[J]. High Voltage Apparatus, 2013, 49(12): 42-48. [16] 周岩. 高压开关柜触头温度在线监测系统研究[D]. 绵阳: 西南科技大学, 2008. [17] 贾文卓. 基于ANSYS的开关柜电场与温度场仿真计算[D]. 天津: 天津大学, 2014. [18] Rong Mingzhe, Zhong Linlin, Cressault Y G, et al.Thermophysical properties of SF6-Cu mixtures at temperatures of 300-30 000 K and pressures of 0.01- 1.0?MPa: part 1. Equilibrium compositions and thermodynamic properties considering condensed phases[J]. Journal of Physics D: Applied Physics, 2014, 47(49): 495202. [19] Wang Xiaohua, Zhong Linlin, Cressault Y, et al.Thermophysical properties of SF6-Cu mixtures at temperatures of 300-30 000?K and pressures of 0.01-1.0?MPa: part 2. Collision integrals and transport coefficients[J]. Journal of Physics D: Applied Physics, 2014, 47(49): 495201. [20] 李兴文, 邓云坤, 姜旭, 等. 环保气体C4F7N和C5F10O与CO2混合气体的绝缘性能及其应用[J]. 高电压技术, 2017, 43(3): 708-714. Li Xingwen, Deng Yunkun, Jiang Xu, et al.Insulation performance and application of enviroment-friendly gases mixtures of C4F7N and C5F10O with CO2[J]. High Voltage Engineering, 2017, 43(3): 708-714. [21] Zhong Linlin, Wang Xiaohua, Rong Mingzhe, et al.Effects of copper vapour on thermophysical properties of CO2-N2 plasma[J]. The European Physical Journal D, 2016, 70: 233. |
|
|
|