|
|
Study on the Transient Stability and Control Schemes of the Sending-End System Involving Wind Power after UHVDC Block |
Zhang Yan1, Ding Ming1, Han Pingping1, Bao Yuying2, Sun Haoran1 |
1. Anhui Provincial Laboratory of New Energy Utilization and Energy Conservation Hefei University of Technology Hefei 230009 China 2. Economic & Technological Research Institute of State Grid Anhui Electric Power Co. Ltd Hefei 230022 China |
|
|
Abstract Ultra-high voltage direct current (UHVDC) block will seriously impact the transient stability of the sending-end system of wind power transmitted by mixed UHVDC/ultra-high voltage alternating current (UHVAC) system (WIND-UHVDC/AC system). To improve the transient stability of the sending-end system, the equation of electrical power of the synchronous generator (SG) in the sending-end system was deducted firstly, the impact of active power fast reduction of double fed induction generator (DFIG) after UHVDC block on the rotor angle stability was analyzed based on the equal-area criterion (EAC), and the control scheme of the active power fast reduction of DFIG was proposed. Then, based on the analysis of UHVDC block and capacitors switch-off on the transient voltage characteristics, the control scheme of reserving partial capacitors after UHVDC block to improve the transient voltage stability of UHVAC lines was proposed. Besides, the impact of variation in the capacitors switch-off time delay on the rotor angle stability was analyzed. Finally, the simulation results of the actual WIND-UHVDC/AC system in China’s northwest power grid show that active power fast reduction of DFIG can improve the rotor angle stability, reserve capacitors can improve the transient voltage stability of the UHVAC lines and has little impact on the rotor angle stability.
|
Received: 25 July 2019
|
|
|
|
|
[1] 盛逸标, 林涛, 陈宝平, 等. 面向新能源外送系统次/超同步振荡的控制器参数协调优化[J]. 电工技术学报, 2019, 34(5): 983-993. Sheng Yibiao, Lin Tao, Chen Baoping, et al.Coordination and optimization of controller parameters for subsynchronous/super-synchronous oscillation in new energy delivery systems[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 983-993. [2] 陈宝平, 林涛, 陈汝斯, 等. 直驱风电场经VSC-HVDC并网系统的多频段振荡特性分析[J]. 电工技术学报, 2018, 33(增刊1): 176-184. Chen Baoping, Lin Tao, Chen Rusi, et al.Characteristics of multi-band oscillation for direct drive wind farm interfaced with VSC-HVDC system[J]. Transactions of China Electrotechnical Society, 2018, 33(S1): 176-184. [3] 王玲, 文俊, 司瑞华, 等. UHVDC分极分层接入方式及其运行特性[J]. 电工技术学报, 2018, 33(4): 730-738. Wang Ling, Wen Jun, Si Ruihua, et al.The connection mode and operation characteristics of UHVDC with hierarchical connection by pole[J]. Transactions of China Electrotechnical Society, 2017, 32(6): 115-122. [4] Xiang D, Turu J C, Muratel S M, et al.On-site LVRT testing method for full-power converter wind turbines[J]. IEEE Transactions on Sustainable Energy, 2016, 8(1): 395-403. [5] 许汉平, 杨炜晨, 张东寅, 等. 考虑换相失败相互影响的多馈入高压直流系统换相失败判断方法[J]. 电工技术学报, 2020, 35(8): 1776-1786. Xu Hanping, Yang Weichen, Zhang Dongyin, et al.Commutation failure judgment method for multi-infeed HVDC systems considering the interaction of commutation failures[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1776-1786. [6] 于强, 孙华东, 仲悟之, 等. 扎鲁特—青州特高压直流输电工程投运后东北电网的稳定特性及控制措施研究[J]. 电网技术, 2018, 42(7): 2023-2029. Yu Qiang, Sun Huadong, Zhong Wuzhi, et al.Stability characteristics and control measures of northeast power grid integrated with Zhalute-Qingzhou UHVDC transmission project[J]. Power System Technology, 2018, 42(7): 2023-2029. [7] 徐式蕴, 吴萍, 赵兵, 等. 提升风火打捆哈郑特高压直流风电消纳能力的安全稳定控制措施研究[J]. 电工技术学报, 2015, 30(13): 92-99. Xu Shiyun, Wu Ping, Zhao Bin, et al.Study on security and stability control strategy enhancing the wind power consuming ability wind-thermal combining Hazheng UHVDC system[J]. Transactions of China Electrotechnical Society, 2015, 30(13): 92-99. [8] 林俐, 吴聪聪, 齐军. 大规模风火混合送端系统严重故障下的紧急切机策略分析[J]. 电网技术, 2016, 40(3): 882-888. Lin Li, Wu Congcong, Qi Jun.Analysis of urgent generator tripping control under serious fault for sending-end system of bundled thermal/wind power[J]. Power System Technology, 2016, 40(3): 882-888. [9] 张旭航, 赵晶晶, 李敏. DFIG风电机组有功控制对电网频率的影响[J]. 分布式能源, 2017, 2(6): 15-20. Zhang Xuhang, Zhao Jingjing, Li Min.Influence of DFIG active power control on power grid frequency[J]. Distributed Energy, 2017, 2(6): 15-20. [10] 白岩, 陈辉祥, 王仲鸿. 直流双极闭锁故障下提高暂态电压稳定性策略探讨[J]. 电力系统自动化, 2006, 30(15): 93-96. Bai Yan, Chen Huixiang, Wang Zhonghong.Discussion on strategies to enhance the system voltage stability under the DC bi-polar block fault[J]. Automation of Electric Power Systems, 2006, 30(15): 93-96. [11] 杨雄平, 罗向东, 李扬絮, 等. 南方电网直流闭锁故障时受端系统电压稳定问题分析[J]. 电力系统保护与控制, 2008, 36(22): 40-43. Yang Xiongping, Luo Xiangdong, Li Yangxu, et al.Voltage stability analysis of receiving-end system in China South Power Grid under the DC block faults[J]. Power System Protection and Control, 2008, 36(22): 40-43. [12] 冯长有, 陈刚, 许涛, 等. 高压直流输电系统故障后电网安全控制装置调制策略[J]. 电网技术, 2012, 36(9): 88-94. Feng Changyou, Chen Gang, Xu Tao, et al.Novel modulation strategy of stability-controlling device after failure occurred in HVDC power transmission system[J]. Power System Technology, 2012, 36(9): 88-94. [13] 罗煦之, 张健, 贺静波, 等. 计及暂态过电压约束的直流闭锁安控与极控协调控制研究[J]. 电网技术, 2015, 39(9): 2526-2531. Luo Xuzhi, Zhang Jian, He Jingbo, et al.Coordinated control research of stability control system and pole control system under DC system block considering transient overvoltage[J]. Power System Technology, 2015, 39(9): 2526-2531. [14] 田新首, 王伟胜, 迟永宁, 等. 双馈风电机组故障行为及对电力系统暂态稳定性的影响[J]. 电力系统自动化, 2015, 39(10): 16-21. Tian Xinshou, Wang Weisheng, Chi Yongning, et al.Performance of DFIG-based wind turbines during system fault and its impacts on transient stability of power systems[J]. Automation of Electric Power Systems, 2015, 39(10): 16-21. [15] Ding Ming, Zhang Yan, Han Pingping, et al.Research on optimal wind power penetration ratio and the effects of a wind-thermal-bundled system under the constraint of rotor angle transient stability[J]. Energies, 2018, 11(3): 666. [16] Zhang Yan, Ding Ming, Han Pingping, et al.Analysis of the interactive influence of the active power recovery rates of DFIG and UHVDC on the rotor angle stability of the sending-end system[J]. IEEE Access, 2019, 7(1): 79944-79958. [17] 唐飞, 刘扬, 施浩波, 等. 一种考虑风电场并网的大电网快速主动解列策略[J]. 电工技术学报, 2019, 34(10): 2092-2101. Tang Fei, Liu Yang, Shi Haobo, et al.A fast active islanding strategy for large power grid considering wind farm integration[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2092-2101. [18] 骆悦, 姚骏, 张田, 等. 大规模风电直流外送系统单极闭锁场景下送端系统协调控制策略[J]. 电工技术学报, 2019, 34(19): 4108-4118. Luo Yue, Yao Jun, Zhang Tian, et al.Coordinated control strategy of large-scale wind power generation sending system under mono-polar block Fault[J]. Transactions of China Electrotechnical Society, 2017, 32(6): 115-122. [19] 尹纯亚, 李凤婷, 周识远, 等. 基于无功功率短路比的直流闭锁暂态过电压计算方法[J]. 电力系统自动化, 2019, 43(10): 150-157, 161. Yin Chunya, Li Fengting, Zhou Shiyuan, et al.Calculation method of transient overvoltage due to DC blocking based on short circuit ratio of reactive power[J]. Automation of Electric Power System, 2019, 43(10): 150-157, 161. [20] Kunder P.Power system stability and control[M]. NewYork: McGraw-Hill Inc, 1994. [21] 吴萍, 徐式蕴, 赵兵, 等. 面向风火打捆的特高压直流输电工程弱送端强直弱交耦合特性研究[J]. 电力自动化设备, 2016, 36(1): 60-66. Wu Ping, Xu Shiyun, Zhao Bin, et al.Research of weak sending-end coupling characteristics for bundled wind-thermal power transmission of UHVDC project[J]. Electric Power Automation Equipment, 2016, 36(1): 60-66. [22] 贺静波, 庄伟, 许涛, 等. 暂态过电压引起风电机组连锁脱网风险分析及对策[J]. 电网技术, 2016, 40(6): 1844-1849. He Jingbo, Zhuang Wei, Xu Tao, et al.Study on cascading tripping risk of wind turbines caused by transient overvoltage and its countermeasures[J]. Power System Technology, 2016, 40(6): 1844-1849. [23] 陈亦平, 陈磊, 叶俊, 等. 云广直流孤岛运行“5.26”双极闭锁原因分析及改进措施[J]. 电力系统自动化, 2014, 38(8): 129-135. Chen Yiping, Chen Lei, Ye Jun, et al.Analysis and improvement of “5.26” bipole trip of Yunnan-Guangdong HVDC islanded operation[J]. Automation of Electric Power System, 2014, 38(8): 129-135. [24] 王正风, 吴迪. 无功调控对暂态功角稳定性的影响[J]. 电力自动化设备, 2007, 27(6): 63-65. Wang Zhengfeng, Wu Di.Effect analysis of reactive power control on transient angle stability[J]. Electric Power Automation Equipment, 2007, 27(6): 63-65. |
|
|
|