|
|
Study on Optimal Power Flow for AC/DC Hybrid System Incorporating MMC-HVDC Based on MOEA/D |
Wang Haoxiang1, Zhao Dongmei1, Tao Ran1, Du Gang1, Tan Long2 |
1. School of Electrical and Electronic Engineering North China Electric Power University Beijing 102206 China 2. State Grid Heilongjiang Electric Power Company Limited Electric Power Research Institute Harbin 150000 China |
|
|
Abstract To coordinate system economy and voltage quality, a new multi-objective optimal power flow algorithm based on multi-objective evolutionary algorithm based on decomposition (MOEA/D) was proposed for AC/DC hybrid system incorporating MMC-HVDC. Firstly, based on the general model of MMC converter stations that consider the losses of the converter, the optimal power flow mathematical model of DC power flow controller(DCPFC) containing AC/DC hybrid system with the target functions for network losses and voltage deviations was established. The calculation formula of the Jacobian matrix at the droop control of the DC grid MMC converter stations with DCPFC was derived. Next, the MOEA/D was used to optimize the AC/DC model to obtain the optimal solution set of Pareto and compared with non-dominated sorting genetic algorithm-2(NSGA-2). Finally, according to the entropy weight method (EWM), the optimization results were supported in decision and the best compromise solution was selected. The IEEE multi-node systems were used to compare the calculation results of the two-terminal and three-terminal MMC converter stations under different control modes, which verifies the effectiveness of the method.
|
Received: 27 September 2019
|
|
|
|
|
[1] 韦延方, 卫志农, 孙国强, 等. 一种新型的高压直流输电技术——MMC-HVDC[J]. 电力自动化设备, 2012, 32(7): 1-9. Wei Yanfang, Wei Zhinong, Sun Guoqiang, et al.New HVDC power transmission technology: MMC-HVDC[J]. Electric Power Automation Equipment, 2012, 32(7): 1-9. [2] 吴杰, 王志新. 多端柔性直流输电系统的改进下垂控制策略[J]. 电工技术学报, 2017, 32(20): 241-250. Wu Jie, Wang Zhixin.Improved droop control strategy for multi-terminal voltage source converter-HVDC[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 241-250. [3] 陈鹏远, 黎灿兵, 周斌, 等. 异步互联电网柔性直流输电紧急功率支援与动态区域控制偏差协调控制策略[J]. 电工技术学报, 2019, 34(14): 3025-3034. Chen Pengyuan, Li Canbing, Zhou Bin, et al.VSC-HVDC emergency power support and dynamic area control error coordinated control strategy for improving the stability of asynchronous interconnected power grids[J]. Transactions of China Electrotechnical Society, 2019, 34(14): 3025-3034. [4] 姚良忠, 吴婧, 王志冰, 等. 未来高压直流电网发展形态分析[J]. 中国电机工程学报, 2014, 34(24): 6007-6020. Yao Liangzhong, Wu Jing, Wang Zhibing, et al.Pattern analysis of future HVDC grid development[J]. Proceedings of the CSEE, 2014, 34(24): 6007-6020. [5] Chen Wu, Zhu Xu, Yao Liangzhong, et al.A novel interline DC power flow controller (IDCPFC) for meshed HVDC grids[J]. IEEE Transactions on Power Delivery, 2016, 31(4): 1719-1727. [6] 武文, 吴学智, 荆龙, 等. 适用于多端直流输电系统的模块化多端口直流潮流控制器[J]. 电工技术学报, 2019, 34(3): 539-551. Wu Wen, Wu Xuezhi, Jing Long, et al.A modular multi-port DC power flow controller for multi-terminal DC transmission system[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 539-551. [7] 张释中, 裴玮, 杨艳红, 等. 基于柔性直流互联的多微网集成聚合运行优化及分析[J]. 电工技术学报, 2019, 34(5): 1025-1037. Zhang Shizhong, Pei Wei, Yang Yanhong, et al.Optimization and analysis of multi-microgrids integration and aggregation operation based on flexible DC interconnection[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 1025-1037. [8] 王家融, 艾欣, 王坤宇, 等. 基于增广雅可比矩阵的交直流解耦潮流新算法[J]. 电工技术学报, 2018, 33(6): 1382-1389. Wang Jiarong, Ai Xin, Wang Kunyu, et al.A novel AC-DC decoupled power flow calculation method based on the augmented Jacobian matrix[J]. Transactions of China Electrotechnical Society, 2018, 33(6): 1382-1389. [9] Baradar M, Hesamzadeh M R, Ghandhari M.Second-order cone programming for optimal power flow in VSC-type AC-DC grids[J]. IEEE Transactions on Power Systems, 2013, 28(4): 4282-4291. [10] Feng Wang, Tuan L A, Tjernberg L B, et al.A new approach for benefit evaluation of multiterminal VSC-HVDC using a proposed mixed AC/DC optimal power flow[J]. IEEE Transactions on Power Systems, 2014, 29(1): 432-443. [11] 卫志农, 季聪, 孙国强, 等. 含VSC-HVDC的交直流系统内点法最优潮流计算[J]. 中国电机工程学报, 2012, 32(19): 89-95. Wei Zhinong, Ji Cong, Sun Guoqiang, et al.Interior-point optimal power flow of AC-DC system with VSC-HVDC[J]. Proceedings of the CSEE, 2012, 32(19): 89-95. [12] 李扬, 李亚辉, 李国庆, 等. 考虑经济性和环境因素的含VSC-HVDC交直流系统多目标最优潮流[J]. 电网技术, 2016, 40(9): 2661-2667. Li Yang, Li Yahui, Li Guoqing, et al.A multi-objective optimal power flow approach considering economy and environmental factors for hybrid AC/DC grids incorporating VSC-HVDC[J]. Power System Technology, 2016, 40(9): 2661-2667. [13] 邓健俊, 文安, 魏承志, 等. 含柔性直流输电的交直流并列系统有功潮流优化方法[J]. 电力系统保护与控制, 2014, 42(11): 118-123. Deng Jianjun, Wen An, Wei Chengzhi, et al.An optimization method for active power flow in AC/VSC-HVDC parallel transmission systems[J]. Power System Protection and Control, 2014, 42(11): 118-123. [14] 卫志农, 季聪, 郑玉平, 等. 计及VSC-HVDC的交直流系统最优潮流统一混合算法[J]. 中国电机工程学报, 2014, 34(4): 635-643. Wei Zhinong, Ji Cong, Zheng Yuping, et al.Optimal power flow of AC-DC systems with VSC-HVDC based on a novel unified hybrid algorithm[J]. Proceedings of the CSEE, 2014, 34(4): 635-643. [15] 苗丹, 刘天琪, 王顺亮, 等. 含柔性直流电网的交直流混联系统潮流优化控制[J]. 电力系统自动化, 2017, 41(12): 70-76. Miao Dan, Liu Tianqi, Wang Shunliang, et al.Optimal control for power flow of AC/DC hybrid system with flexible DC grid[J]. Automation of Electric Power Systems, 2017, 41(12): 70-76. [16] 姜舒婷, 齐磊, 崔翔, 等. 含潮流控制器的直流电网潮流计算方法[J]. 电网技术, 2015, 39(7): 1793-1799. Jiang Shuting, Qi Lei, Cui Xiang, et al.Power flow algorithm method for DC grid with power controller[J]. Power System Technology, 2015, 39(7): 1793-1799. [17] Cao Jun, Du W, Wang H F.An improved corrective security constrained OPF for meshed AC/DC grids with multi-terminal VSC-HVDC[J]. IEEE Transactions on Power Systems, 2016, 31(1): 485-495. [18] Cao Jun, Du Wenjuan, Wang Haifeng, et al.Minimization of transmission loss in meshed AC/DC grids with VSC-MTDC networks[J]. IEEE Transactions on Power Systems, 2013, 28(3): 3047-3055. [19] Beerten J, Cole S, Belmans R.Generalized steady-state VSC MTDC model for sequential AC/DC power flow algorithms[J]. IEEE Transactions on Power Systems, 2012, 27(2): 821-829. [20] Das S, Suganthan P N.Differential evolution: A survey of the state-of-the-art[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(1): 4-31. [21] Yao Weifeng, Zhao Junhua, Wen Fushuan, et al.A hierarchical decomposition approach for coordinated dispatch of plug in electric vehicles[J]. IEEE Transactions on Power Systems, 2013, 28(3): 2768-2778. [22] 张涛, 朱彤, 高乃平, 等. 分布式冷热电能源系统优化设计及多指标综合评价方法的研究[J]. 中国电机工程学报, 2015, 35(14): 3706-3713. Zhang Tao, Zhu Tong, Gao Naiping, et al.Optimization design of distributed cold and heat energy system and multi-index comprehensive evaluation method[J]. Proceedings of the CSEE, 2015, 35(14): 3706-3713. [23] 杜琳, 孙亮, 陈厚合. 计及电转气规划的综合能源系统运行多指标评价[J]. 电力自动化设备, 2017, 37(6): 110-116. Du Lin, Sun Liang, Chen Houhe.Multi-indicator evaluation of integrated energy system operation considering electro-gas conversion planning[J]. Electric Power Automation Equipment, 2017, 37(6): 110-116. |
|
|
|