|
|
An EFG-MG Method and Its Application in Numerical Calculation of Electromagnetic Field |
Wang Lipeng1, 2, Wang Xinyan2, Tang Renyuan1 |
1.Shenyang University of Technology Shenyang 110023 China 2. Shenyang Institute of Chemical Technology Shenyang 110142 China |
|
|
Abstract In order to resolve the problem of low computational efficiency of element-free Galerkin method, the paper introduces the accelerated iterative multigrid method to the element-free Galerkin discrete field, and proposes a multigrid method of element-free Galerkin (EFG-MG). The node group is used to construct coarse nodes and the restriction operator is disposed in terms of the relation of coarse nodes and fine nodes. It is used to numerical computation of electromagnetic field problems, and the high efficiency of element-free Galerkin method is proved by examples.
|
Received: 30 September 2008
Published: 04 March 2014
|
|
|
|
|
[1] 张雄, 宋康祖, 陆明万.无网格法研究进展及其应 用[J]. 计算力学学报, 2003, 20(6): 730-742. [2] Ho S L, Yang S, Machado J M, et al. Applications of a meshless method in electromagnetics[J]. IEEE Transactions on Magnetics, 2001, 37(5): 3198-3202. [3] Maréchal Y. Some meshless methods for electromagnetic field computations[J]. IEEE Transactions on Magnetics, 1998, 34(5): 3351-3354. [4] Cingoski V, Miyamoto N, Yamashita H. Element-free Galerkin method for electromagnetic field computa- tions[J]. IEEE Transactions on Magnetics, 1998, 34(5): 3236-3239. [5] Aluru N R. A point collocation method for meshless analysis of microelectronic and micro-electromechanical devices[C]. International Workshop on Computational Electronics, 1998: 54-57. [6] Viana S A, Mesquita R C. Moving least square reproducing kernel method for electromagnetic field computation[J]. IEEE Transactions on Magnetics, 1999, 35(3): 1372-1375. [7] Herault C, Maréchal Y. Boundary and interface conditions meshless methods (for EM field analysis)[J]. IEEE Transactions on Magnetics, 1999, 35(3): 1450- 1453. [8] Mitchell M J, Qiao R, Aluru N R. Meshless analysis of steady-state electro-osmotic transport[J]. Journal of Microelectro-mechanical Systems, 2000, 9(4): 435- 449. [9] Li Gang, Aluru N R. Linear, nonlinear and mixed- regime analysis of electrostatic MEMS[J]. Sensor and Actuators, 2001, 91(3): 278-291. [10] Klaus Stüben, Ulrich Trottenberg. Multigrid methods: fundamental algorithms, model problem analysis and applications, in multigrid method[C]. Lecture Notes in Math. 960, Springer-Verlag, Berlin and New York, 1982: 1-176. [11] 周浩, 倪光正. 多重网格法及其在静态电磁场数值分析中的应用[J]. 中国电机工程学报, 1990, 10(5): 20-26. [12] Arieh Iserles. A first course in the numerical analysis of differential equations[M]. Cambridge: Cambridge Univ. Press, 1996. [13] Hackbusch W. Convergence of multi-grid iterations applied to difference equation[J]. Math. Comp., 1980, 34: 425-440. [14] Hackbusch W. On the convergence of multi-grid iterations[J]. Beitrage Nuimer. Muth., 1981(9): 213- 239. [15] Hackbusch W, Trottenberg U. Multigrid methods[C]. Lecture Notes in Mathematics 960, Springer, Berlin, 1986. [16] Hackbusch W. Multi-grid methods and applications[M]. New York: Springer-Verlag, 1985. [17] Hackbusch W, Trottenberg U. Multigrid methods II[C]. Lecture Notes in Mathematics 1228, Springer, Berlin, 1982. [18] Hackbusch W. Robust multigrid methods[M]. Friedr. Vieweg 8 Sohn, 1988. [19] Hackbusch W, Trottenberg U. Multigrid methods III[C]. Proc. 3rd Int. Conf. on Multigrid methods. Int. Series of Num. Math.98, Birkhauser, Basel, 1991. [20] Hackbusch W, Wittum G. Multigrid methods V[C]. Proc. 5rd European Multigrid Conf. Lecture Notes in Computational Science and Engineering 3, Springer, Berlin, 1998. [21] Braess D, Verfurth R. Multigrid methods for nonconforming finite element methods[J]. IAM J. Numer. Anal., 1990(27): 979-986. |
|
|
|