|
|
Internal Model Control-PID Control of An Active Magnetic Bearing High-Speed Motor Rotor System |
Zhou Tianhao1, Yang Zhi2, Zhu Changsheng1, Li Pengfei1 |
1. College of Electrical Engineering Zhejiang University Hangzhou 310027 China; 2. No. 704 Research Institute China Shipbuilding Industry Corporation Shanghai 200031 China |
|
|
Abstract PID control is the most widely used control method in rotor system of an active magnetic bearing (AMB) high-speed motor. However, it is difficult to find three proper parameters for PID controllers. In order to reduce the difficulty of PID parameters tuning, an internal model control (IMC) was combined with PID control to design an IMC-PID controller, which transforms the tuning process of three parameters into one. Then, the influences of the only parameter on the stability, anti-interference ability, maximum vibration amplitude and critical speed of rotor system were analyzed, and the rules for its selection were clarified. At last, the designed IMC-PID controller was simulated on a single-degree-of-freedom magnetically levitated system and an AMB high-speed motor rotor system, and the related experiments were carried out on an AMB high-speed motor platform. Both simulation and experimental results show that IMC-PID control has good control performance and strong robustness.
|
Received: 16 July 2019
|
|
|
|
|
[1] Schweitzer G, Maslen E H.Magnetic bearings: theory, design, and application to rotating machinery[M]. New York: Springer, 2009. [2] 张维煜, 朱熀秋, 袁野. 磁悬浮轴承应用发展及关键技术综述[J]. 电工技术学报, 2015, 30(12): 12-20. Zhang Weiyu, Zhu Huangqiu, Yuan Ye.Study on key technologies and applications of magnetic bearings[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 12-20. [3] 李万杰, 张国民, 王新文, 等. 飞轮储能系统用超导电磁混合磁悬浮轴承设计[J]. 电工技术学报, 2020, 35(增刊1): 10-18. Li Wanjie, Zhang Guomin, Wang Xinwen, et al.Integration design of high-temperature super- conducting bearing and electromagnetic thrust bearing for flywheel energy storage system[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 10-18. [4] 姜豪, 苏振中, 王东. 运动平台上磁轴承-转子系统的动力学建模[J]. 电工技术学报, 2019, 34(23): 4880-4889. Jiang Hao, Su Zhenzhong, Wang Dong.Dynamic modeling of magnetic bearing-rotor system on moving platform[J]. Transactions of China Electrotechnical Society, 2019, 34(23): 4880-4889. [5] 张涛, 刘欣凤, 莫丽红, 等. 磁悬浮高速电机系统建模与控制[J]. 电机与控制学报, 2018, 22(4): 98-104. Zhang Tao, Liu Xinfeng, Mo Lihong, et al.Modeling and control of magnetic suspension high-speed motor[J]. Electric Machines and Control, 2018, 22(4): 98-104. [6] 于洁, 祝长生, 余忠磊. 考虑涡流的自传感主动电磁轴承转子位置估计策略[J]. 电工技术学报, 2018, 33(9): 1946-1956. Yu Jie, Zhu Changsheng, Yu Zhonglei.Rotor position estimation strategy for self-sensing active magnetic bearing considering eddy currents[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 1946-1956. [7] 陈亮亮, 祝长生, 王忠博. 基于逆系统解耦的电磁轴承飞轮转子系统二自由度控制[J]. 电工技术学报, 2017, 32(23): 100-114. Chen Liangliang, Zhu Changsheng, Wang Zhongbo.Two-degree-of-freedom control for active magnetic bearing flywheel rotor system based on inverse system decoupling[J]. Transactions of China Electro- technical Society, 2017, 32(23): 100-114. [8] Aleksandar B.Limits, modeling and design of high- speed permanent magnet machines[M]. Belin: Springer, 2013. [9] Psonis T K, Nikolakopoulos P G, Mitronikas E.Design of a PID controller for a linearized magnetic bearing[J]. International Journal of Rotating Machin- ery, 2015: 1-12. [10] Gupta S, Laldingliana J, Debnath S, et al.Closed loop control of active magnetic bearing using PID con- troller[C]//Proceedings of International Conference on Computing, Power and Communication Techno- logies, Greater Noida, Uttar Pradesh, 2018: 686-690. [11] Ghosh A, Rakesh Krishnan T, Tejaswy P, et al.Design and implementation of a 2-DOF PID compensation for magnetic levitation systems[J]. ISA Transactions, 2014, 53(4): 1216-1222. [12] Mishra S S, Mishra S K, Swain S K.Coefficient diagram method (CDM) based PID controller design for magnetic levitation system with time delay[C]// Proceedings of IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing, Srivilliputhur, India, 2017: 1-8. [13] Vinodh K E, Jerome J.LQR based optimal tuning of PID controller for trajectory tracking of magnetic levitations system[J]. Procedia Engineering, 2013, 64: 254-264. [14] Kallakuri P.Data based design of PID controllers for a magnetic levitation experiment[D]. Tennessee: Tennessee State University, 2011. [15] Xu Chunguang, Lü Dongming, Hao Juan.Design method for the magnetic bearing control system with fuzzy-PID approach[J]. Journal of Beijing Institude of Technology, 2008, 17(3): 270-273. [16] Ahmad I, Shahzad M, Palensky P.Optimal PID control of magnetic levitation system using genetic algorithm[C]//Proceedings of IEEE International Energy Conference, Cavtat, Croatia, 2014: 1429-1433. [17] Wei Chunsheng, Soffker D.Optimization strategy for PID-controller design of AMB rotor systems[J]. IEEE Transactions on Control Systems Technology, 2016, 24(3): 788-803. [18] Chen Hung-Cheng.Adaptive genetic algorithm based optimal PID controller design of an active magnetic bearing system[C]//Proceedings of the 3rd International Conference on Innovative Computing Information and Control, Dalian, 2008: 603-610. [19] Chen Hung-Cheng.Optimal fuzzy PID controller design for an active magnetic bearing system based on adaptive genetic algorithms[C]//Proceedings of International Conference on Machine Learning and Cybernetics, Kunming, 2008: 2054-2060. [20] 李社蕾, 李海涛, 王喜鸿. 磁悬浮PID参数整定仿真[J]. 计算机仿真, 2012, 29(9): 348-351. Li Shelei, Li Haitao, Wang Xihong.Simulation of parameters optimization of maglev PID controller[J]. Computer Simulation, 2012, 29(9): 348-351. [21] Stimac G B S Z. Comparative analysis of PSO algorithms for PID controller tuning[J]. Chinese Journal of Mechanical Engineering, 2014, 27(5): 928-936. [22] Zhang Yanhong, Zheng Zhongqiao, Zhang Jiansheng, et al.Research on PID controller in active magnetic levitation based on particle swarm optimization algorithm[J]. The Open Automation and Control Systems Journal, 2015, 7(1): 1870-1874. [23] Noshadi A, Shi J, Lee W S, et al.Optimal PID-type fuzzy logic controller for a multi-input multi-output active magnetic bearing system[J]. Neural Computing and Applications, 2016, 27(7): 2031-2046. [24] Duka A, Dulău M, Oltean S.IMC based PID control of a magnetic levitation system[J]. Procedia Tech- nology, 2016, 22: 592-599. [25] Zheng Zhongqiao, Wang Xiaojing, Zhang Yanhong, et al.The research on IMC-PID control in maglev supporting system[J]. The Open Automation and Control Systems Journal, 2014, 6(1): 797-802. |
|
|
|