|
|
Analysis of the Impact of AC System Faults on Filter Commutated Converter in HVDC |
Xu Jiazhu, Luo Longfu, Li Ji, Zhao Zhiyu, Shao Pengfei |
Hunan University Changsha 410082 China |
|
|
Abstract The commutation failure of converters is a type of common faults in DC transmission system when faults of AC system occur. As filter commutated converter (FCC) is a new converter circuit topology structure, it’s necessary to research commutation characteristics of FCC under the conditions of AC system’s faults. Firstly, the actual extinction angle is calculated under the conditions of symmetrical and unsymmetrical AC three-phase faults; and the relationship between the commutation voltage reduction, the extinction angle, DC current and zero-crossing phase shift are researched. Further, based on the mathematical model of FCC, the influence of compensation factor at the valve side on the extinction angle, commutation angle, commutation voltage and commutated reactance is analyzed in detail. In the last, referring to the parameters of back-to-back DC transmission system in the lab, the simulating results are contrastively researched between FCC and LCC under the conditions of AC system faults, which indicated that the inverter is more inclined to occurring commutation failure under single phase fault than three phase symmetrical fault; for the harmonics in the commutation voltage of FCC is less than in the LCC, FCC can load more commutation voltage reduction, but when selecting the compensation factor at the valve side, the commutation failure and commutated reactance must both be taken into account.
|
Received: 23 October 2008
Published: 04 March 2014
|
|
|
|
|
[1] 苏宏田, 齐旭, 吴云. 我国特高压直流输电市场需求研究[J]. 电网技术, 2005, 29(24): 1-4. [2] 段立诚. 高压直流输电的应用和发展[J]. 陕西水力发电, 1994, 10(1): 59-61. [3] 舒印彪. 我国特高压输电的发展和实施[J]. 中国电力, 2005, 38(11): 1-8. [4] 尚春. 特高压输电技术在南方电网的发展与应用[J]. 高电压技术, 2006, 32(1): 35-37. [5] 李立浧. 直流输电技术的发展及其在我国电网中的应用[J]. 电力设备, 2004, 5(11): 1-3. [6] Sun Y Z, Ling Peng, Feng Ma, et al. Design a fuzzy controller to minimize the effect of HVDC commu- tation failure on power system[J]. IEEE Transactions on Power Systems, 2008, 23(1): 100-107. [7] 任震, 陈永进, 梁振升, 等. 高压直流输电系统换相失败的概率分析[J]. 电力系统自动化, 2004, 28(24): 19-22. [8] 吴晔, 殷威扬. 逆变侧熄弧角Gamma-Kick控制仿真计算[J]. 高电压技术, 2005, 31(2): 31-32. [9] Thio C V, Davies J B, Kent K L. Commutation failures in HVDC transmission system[J]. IEEE Trans. on Power Delivery, 1996, 11(2): 946-957. [10] 浙江大学发电教研组, 直流输电科研组. 直流输 电[M]. 北京: 水利电力出版社, 1985. [11] 许加柱. 新型换流变压器及其滤波系统的理论与应用研究[D]. 长沙:湖南大学, 2007. [12] 李季, 罗隆福, 许加柱, 等. 一种滤波换相换流器工作机理与稳态模型[J]. 电工技术学报, 2008, 23(8): 53-59. [13] Szechtman M, Wess T, Thio C V. First benchmark model for HVDC control studies[J]. Electra, 1991, 135(4): 54-73. [14] 杨汾艳, 徐政. 直流输电系统典型暂态响应特性分析[J]. 电工技术学报, 2005, 20(3): 45-52. [15] 罗隆福, 周金萍, 李勇, 等. HVDC换相失败典型暂态响应特性及其抑制措施[J]. 电力自动化设备, 2008, 28(4): 5-9, 36. |
|
|
|