|
|
Study on Polarization Characteristics and Rapid Detection Method of Micro Water Content in the Terahertz Band Containing Micro-Water Oil-Immersed Insulating Paperboard |
Yin Jing, Cheng Li, Wang Hanqing, Liao Ruijin, Cheng Zhidong |
State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China |
|
|
Abstract The water content detection of oil paper is an important means to study the insulation state of transformers. In order to study the polarization behavior of oil-paper insulation in the terahertz frequency band and realize the rapid and non-destructive detection of water content in oil paper, this paper tested the oil-immersed insulating paperboard with different water contents by terahertz time-domain spectroscopy. The absorption of terahertz incident waves by water in the oil paper was studied. Then, the complex dielectric constant and dielectric loss of the samples in the terahertz band were calculated according to the related optical theory and the generalized Maxwell relationship. In addition, the Debye relaxation models were used to further analyze the polarization characteristics of water molecules in oil paper. Finally, based on the theory of polar liquid relaxation and resonance polarization, the terahertz test results of micro-water-oil paper were fitted. The results show that the water molecules in the oil paper will undergo relaxation polarization and resonance polarization in the terahertz band. With higher stiffness, the resonant polarization of cellulose-water molecules cause by the hydrogen bonds is weaker than that by water-water molecules. Thus, the resonance term amplitude Aosc can not only evaluate the water content of the oil paper, but also characterize its polarization behavior and moisture state.
|
Received: 05 July 2019
|
|
|
|
|
[1] 杨丽君, 彭攀, 高竣, 等. 基于频域介电响应特征指纹的油纸绝缘受潮及老化状态区间识别[J]. 电工技术学报, 2018, 33(9): 2105-2114. Yang Lijun, Peng Pan, Gao Jun, et al.The range recognition of moisture and aging status of oil-paper insulation based on frequency domain dielectric response characteristic fingerprint[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 2105-2114. [2] 戴佺民, 齐波, 李成榕, 等. 油浸纸套管尾部受潮故障模拟及早期特征[J]. 电工技术学报, 2018, 33(11): 2613-2619. Dai Quanming, Qi Bo, Li Chengrong, et al.Fault simulation and early characteristics of tail moisture in oil-immigrated paper bushing[J]. Transactions of China Electrotechnical Society, 2018, 33(11): 2613-2619. [3] 廖瑞金, 刘捷丰, 杨丽君, 等. 电力变压器油纸绝缘状态评估的频域介电特征参量研究[J]. 电工技术学报, 2015, 30(6): 247-254. Liao Ruijin, Liu Jiefeng, Yang Lijun, et al.Inves- tigation on frequency domain dielectric characteri- stics for condition assessment of transformer oil- paper insulation[J]. Transactions of China Electro- technical Society, 2015, 30(6): 247-254. [4] Saha T K, Purkait P.Investigation of an expert system for the condition assessment of transformer insulation based on dielectric response measure- ment[J]. IEEE Transactions on Power Delivery, 2004, 19(3): 1127-1134. [5] 王东阳, 周利军, 陈雪骄, 等. 变压器油纸绝缘系统低频介电参数方程[J]. 电工技术学报, 2017, 32(17): 218-224. Wang Dongyang, Zhou Lijun, Chen Xuejiao, et al.Complex relative permittivity expressions of oil- paper insulation for low frequency domain dielectric response[J]. Transactions of China Electrotechnical Society, 2017, 32(17): 218-224. [6] Farahani M, Borsi H, Gockenbach E.Dielectric response studies on insulating system of high voltage rotating machines[J]. IEEE Transactions on Diele- ctrics and Electrical Insulation, 2006, 13(1): 383-393. [7] Wang Chen, Qin Jianyuan, Xu Wendao, et al.Terahrtz imaging applications in agriculture and food engineering: a review[J]. Transactions of the Asabe, 2018, 61(2): 411-424. [8] Rahman, Anis, Rahman, et al. Engineering dendri- mers to produce dendrimer dipole excitation based terahertz radiation sources suitable for spectrometry, molecular and biomedical imaging[J]. Nanoscale Horizons, 2017, 2(3): 127-134. [9] 曹灿, 张朝晖, 赵小燕, 等. 太赫兹时域光谱与频域光谱研究综述[J]. 光谱学与光谱分析, 2018, 38(9): 2688-2699. Cao Can, Zhang Zhaohui, Zhao Xiaoyan, et al.Review of terahertz time domain spectroscopy and frequency domain spectroscopy[J]. Spectroscopy and Spectral Analysis, 2018, 38(9): 2688-2699. [10] Kistenev Yury V, Borisov, Alexey V, et al.Diagnosis of oral lichen planus from analysis of saliva samples using terahertz time-domain spectroscopy and chemometrics[J]. Journal of Biomedical Optics, 2018, 23(4): 1-9. [11] Yasui T, Araki T, Zhang Xuejun, et al.Sensitive measurement of water content in dry material based on low-frequency terahertz time-domain spectro- scopy[C]//Ico20: Optical Devices & Instruments. International Society for Optics and Photonics, Changchun, China, 2005, 60240A: 69-74. [12] Hu B B, Nuss M C.Imaging with terahertz waves[J]. Optics Letters, 1995, 20(16): 1716. [13] Gorenflo S, Tauer U, Hinkov I, et al.Dielectric properties of oil-water complexes using terahertz transmission spectroscopy[J]. Chemical Physics Letters, 2006, 421(4-6): 494-498. [14] 刘欢, 韩东海. 基于太赫兹时域光谱技术的饼干水分定量分析[J]. 食品安全质量检测学报, 2014, 5(3): 725-729. Liu Huan, Han Dongmei.Quantitative detection of moisture content of biscuits by terahertz time-domain spectroscopy[J]. Journal of Food Safety & Quality, 2014, 5(3): 725-729. [15] Hassan A M, Hufnagle D C, El-Shenawee M, et al.Terahertz imaging for margin assessment of breast cancer tumors[C]//IEEE MTT-S international Micro- wave Symposium Digest, Montreal, QC, Canada, 2012: 1-3. [16] Xie Lijuan, Yao Yang, Ying Yibin.The application of terahertz spectroscopy to protein detection: a review[J]. Applied Spectroscopy Reviews, 2014, 49(6): 448-461. [17] Wittlin A, Genzel L, Kremer F, et al.Far-infrared spectroscopy on oriented films of dry and hydrated DNA[J]. Physical Review A, 1986, 34(1): 493-500. [18] 刘丽萍, 王煜斐, 张亚洲, 等. 太赫兹光谱技术检测水分及水合作用的研究进展[J]. 分析化学进展, 2018, 8(1): 1-10. Liu Liping, Wang Yufei, Zhang Yazhou, et al.Research in moisture and hydration detection by terahertz time domain spectroscopy[J]. Advances in Analytical Chemistry, 2018, 8(1): 1-10. [19] 孙会刚. 水分对油纸绝缘热老化及寿命的影响与热老化程度表征研究[D]. 重庆: 重庆大学, 2011. [20] Ajito, Katsuhiro.Terahertz spectroscopy for phar- maceutical and biomedical applications[J]. IEEE Transactions on Terahertz Science and Technology, 2015, 5(6): 1140-1145. [21] 汪胜晗. 受激拉曼散射光谱研究冲击波作用下水体系和硝基甲烷的结构[D]. 吉林: 吉林大学, 2018. [22] Ivanov V P.Method for computing the velocity of an electromagnetic wave propagating in a medium with inclusions at a low particle concentration[J]. Com- putational Mathematics and Mathematical Physics, 2019, 59(2): 322-329. [23] Banerjee D, von Spiegel W, Thomson M D, et al. Diagnosing water content in paper by terahertz radiation[J]. Optics Express, 2008, 16(12): 9060-9066. [24] 曹丙花. 基于太赫兹时域光谱的检测技术研究[D]. 杭州: 浙江大学, 2009. [25] 王强, 李欣屹, 常天英, 等. 航空复合材料及其基体树脂的太赫兹光谱特性研究[J]. 光谱学与光谱分析, 2018, 38(9): 2706-2712. Wang Qiang, Li Xinyi, Chang Tianying, et al.Study on terahertz spectral properties of aerospace com- posites and their matrix resins[J]. Spectroscopy and Spectral Analysis, 2018, 38(9): 2706-2712. [26] Peter J W D. Polar molecules[M]. New York, USA: Chemical Catalog, 1929. [27] 高竣, 廖瑞金, 王有元, 等. 基于扩展Debye模型的变压器油浸绝缘纸板老化特征量研究[J]. 电工技术学报, 2016, 31(4): 211-217. Gao Jun, Liao Ruijin, Wang Youyuan, et al.Ageing characteristic quantities of oil-paper insulation for transformers based on extended Debye model[J]. Transactions of China Electrotechnical Society, 2016, 31(4): 211-217. [28] Vinh N Q, Mark S Sherwin, James Allen S, et al.High-precision gigahertz-to-terahertz spectroscopy of aqueous salt solutions as a probe of the femtosecond- to-picosecond dynamics of liquid water[J]. The Journal of Chemical Physics, 2015, 142(16): 164502. [29] 杜林, 冉鹂蔓, 蔚超, 等. 基于扩展德拜模型的油纸绝缘受潮频域特征量研究[J]. 电工技术学报, 2018, 33(13): 3051-3058. Du Lin, Ran Liman, Wei Chao, et al.Study on frequency domain characteristics of moisture in oil- paper insulation based on extended Debye model[J]. Transactions of China Electrotechnical Society, 2018, 33(13): 3051-3058. [30] 李国华. 水的太赫兹谱测量[D]. 长沙: 国防科学技术大学, 2010. [31] 廖瑞金, 朱孟兆, 周欣, 等. 油纸复合介质中水分子扩散行为的分子动力学模拟[J]. 物理化学学报, 2011, 27(4): 815-824. Liao Ruijin, Zhu Mengzhao, Zhou Xin, et al.Molecular dynamics simulation of the diffusion behavior of water molecules in oil and cellulose composite media[J]. Acta Physico-Chimica Sinica, 2011, 27(4): 815-824. [32] 王伟, 董文妍, 李芳义, 等. 升温过程中水分子在油纸界面处的迁移和聚集行为的分子模拟[J]. 高电压技术, 2018, 16(4): 5-8. Wang Wei, Dong Wenyan, Li Fangyi, et al.Mole- cular simulation of migration and aggregation behavior of water molecules at interface ofmineral oil and cellulose during rapid temperature rising[J]. High Voltage Engineering, 2018, 16(4): 5-8. [33] 李文海, 李亚平, 杨作银, 等. (H2O)5环状异构体的氢键协同作用和相互作用能的多体效应[J]. 北京化工大学学报: 自然科学版, 2013, 40(6): 23-29. Li Wenhai, Li Yaping, Yang Zuoyin, et al.Cooperati- vity of hydrogen bonds and the contribution of many-body terms to the interaction energy in (H2O)5 ring water pentamers[J]. Journal of Beijing Univer- sity of Chemical Technology: Natural Science Edition, 2013, 40(6): 23-29. [34] Shroffd H, Stannetta W.A review of paper aging in power transformers[J]. IEE Proceedings C: Generation Transmission and Distribution, 1985, 132(6): 312-319. [35] 李向军. 基于太赫兹时域谱技术的有机分子溶液检测与分析研究[D]. 杭州: 浙江大学, 2011. [36] 韩诗颖. 水和生物样品的太赫兹光谱与成像[D]. 南京: 南京大学, 2018. |
|
|
|