|
|
Numerical Simulation for Surface Discharge of Air-Polyimide Insulation under Pulsed Electrical Stress |
Dong Guojing1, Liu Tao1,2, Li Qingmin1 |
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China; 2. China Electric Power Research Institute Beijing 100192 China |
|
|
Abstract Surface discharge is one of the main reasons for the failure of the gas-solid insulation system of high-frequency power transformers. In order to investigate the evolution process of surface discharge, a simplified but effective set of reactions was used to describe all the particle reactions in air discharges. On this basis, a numerical model for discharge along air-polyimide surface was proposed with fluid dynamic theory, in which the transport equations of different particles, Poisson equation and plasma chemistry reactions in the discharge gap or channel were involved, along with the reaction process and accumulation of the charged particles on the dielectric surface. Then, the surface discharge evolution under the needle-to-bar electrode with 1cm gap was investigated by simulations. Distribution and variation of particle density, surface charge density and electric field versus discharge time were obtained. The reliability of the model was verified by experiments from the aspects of discharge development morphology and surface charge accumulation. Accordingly, the influence of temperature, gas pressure and secondary electron emission on surface discharge was also studied and revealed. The results indicate that the discharge propagation velocity is positively correlated with temperature, and negatively correlated with air pressure. The larger the secondary electron emission coefficient, the faster the discharge develops and the more the surface charge accumulates.
|
Received: 19 March 2019
Published: 12 May 2020
|
|
|
|
|
[1] 李子欣, 高范强, 赵聪, 等. 电力电子变压器技术研究综述[J]. 中国电机工程学报, 2018, 38(5): 1274-1289. Li Zixin, Gao Fanqiang, Zhao Cong, et al.Research review of power electronic transformer techno- logies[J]. Proceedings of the CSEE, 2018, 38(5): 1274-1289. [2] Qin Hengsi, Kimball J W.Solid-state transformer architecture using AC-AC dual-active-bridge con- verter[J]. IEEE Transactions on Industrial Electronics, 2013, 60(9): 3720-3730. [3] 张明锐, 刘金辉, 金鑫. 应用于智能微网的SVPWM固态变压器研究[J]. 电工技术学报, 2012, 27(1): 90-97. Zhang Mingrui, Liu Jinhui, Jin Xin.Research on the SVPWM solid state transformer applied[J]. Transa- ctions of China Electrotechnical Society, 2012, 27(1): 90-97. [4] 陈彬, 李琳, 赵志斌. 典型非正弦电压波激励下高频磁心损耗(英文)[J]. 电工技术学报, 2018, 33(8): 1696-1704. Chen Bin, Li Lin, Zhao Zhibin.Magnetic core losses under high-frequency typical non-sinusoidal voltage magnetization[J]. Transactions of China Electro- technical Society, 2018, 33(8): 1696-1704. [5] Liu Tao, Li Qingmin, Dong Guojing, et al.Multi- factor model for lifetime prediction of polymers used as insulation material in high frequency electrical equipment[J]. Polymer Testing, 2019, 73: 193-199. [6] 张开放, 张黎, 李宗蔚, 等. 高频正弦电应力下气-固绝缘沿面放电现象及特征分析[J]. 电工技术学报, 2019, 34(15): 3275-3284. Zhang Kaifang, Zhang Li, Li Zongwei, et al.Analysis of the phenomena and characteristics of gas-solid insulation surface discharge under high frequency sinusoidal electrical stress[J]. Transactions of China Electrotechnical Society, 2019, 34(15): 3275-3284. [7] Lu Binxian, Sun Hongyu.The role of photoionization in negative corona discharge[J]. Aip Advances, 2016, 6(9): 095111. [8] 彭庆军, 司马文霞, 杨庆, 等. 初始电子浓度对空气中针板间隙正极性流注放电的影响[J]. 高电压技术, 2013, 39(1): 37-43. Peng Qingjun, Sima Wenxia, Yang Qing, et al.Influence of initial electron concentration on positive streamer discharge in pin-plate air gap[J]. High Voltage Engineering, 2013, 39(1): 37-43. [9] 姚聪伟, 常正实, 张冠军, 等. 大气压氩气介质阻挡放电等离子体特性变化的一维仿真[J]. 高电压技术, 2015, 41(6): 2084-2092. Yao Congwei, Chang Zhengshi, Zhang Guanjun, et al.One-dimensional simulation of evolution characteri- stics of dielectric barrier discharge in atmospheric pressure argon[J]. High Voltage Engineering, 2015, 41(6): 2084-2092. [10] Barjasteh A, Eslami E, Morshedian N.Experimental investigation and numerical modeling of the effect of voltage parameters on the characteristics of low- pressure argon dielectric barrier discharges[J]. Physics of Plasmas, 2015(22): 073508. [11] Lee H Y, Kang I M, Lee S H.Fully coupled finite element analysis for surface discharge on solid insulation in dielectric liquid with experimental validation[J]. IEEE Transactions on Magnetics, 2016, 52(3): 1-4. [12] Singh S, Serdyuk Y V, Summer R.Streamer pro- pagation in hybrid gas-solid insulation[C]//IEEE Conference on Electrical Insulation and Dielectric Phenomena, Ann Arbor, MI, USA, 2015: 387-390. [13] 陈田. 两相体沿面放电研究[D]. 武汉: 华中科技大学, 2015. [14] 李清泉, 许光可, 房新振, 等. 沿面型介质阻挡放电的数值仿真计算[J]. 高电压技术, 2012, 38(7): 1548-1555. Li Qingquan, Xu Guangke, Fang Xinzhen, et al.Numerical simulation of surface dielectric barrier discharge[J]. High Voltage Engineering, 2012, 38(7): 1548-1555. [15] 司马文霞, 刘春香, 杨鸣, 等. 沿绝缘介质表面的气体放电等离子体模型[J]. 中国电机工程学报, 2017, 37(9): 278-287. Sima Wenxia, Liu Chunxiang, Yang Ming, et al.Plasma model of gas discharge along the dielectric surface[J]. Proceedings of the CSEE, 2017, 37(9): 278-287. [16] Dervos C, Bourkas P D, Kayafas E A, et al.Enhanced partial discharges due to temperature increase in the combined system of a solid-liquid dielectric[J]. IEEE Transactions on Electrical Insulation, 1990, 25(3): 469-474. [17] 鲁杨飞, 李庆民, 刘涛, 等. 高频电压下表面电荷分布对沿面放电发展过程的影响[J]. 电工技术学报, 2018, 33(13): 3059-3070. Lu Yangfei, Li Qingmin, Liu Tao, et al.Effect of surface charge on the surface discharge evolution for polyimide under high frequency voltage[J]. Transa- ctions of China Electrotechnical Society, 2018, 33(13): 3059-3070. [18] Dai Jie, Wang Zhongdong, Jarman P.Creepage discharge on insulation barriers in aged power transformers[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(4): 1327-1335. [19] 赵义焜, 张国强, 郭润睿, 等. 变压器耐高温型匝间绝缘材料的放电特性研究[J]. 电工电能新技术, 2019, 38(3): 1-9. Zhao Yikun, Zhang Guoqiang, Guo Runrui, et al.Study on discharge characteristics of heat resistant inter-turn insulation materials in power trans- formers[J]. Advanced Technology of Electrical Engineering and Energy, 2019, 38(3): 1-9. [20] 刘涛, 韩帅, 李庆民, 等. 频变电应力下高频电力变压器绝缘沿面放电形态及发展过程[J]. 电工技术学报, 2016, 31(19): 199-207. Liu Tao, Han Shuai, Li Qingmin, et al.Patterns and development of the surface discharge of high frequency power transformer insulation under frequency-dependent electric stress[J]. Transactions of China Electrotechnical Society, 2016, 31(19): 199-207. [21] Bourdon A, Pasko V P, Liu N Y, et al.Efficient models for photoionization produced by non-thermal gas discharges in air based on radiative transfer and the Helmholtz equations[J]. Plasma Sources Science and Technology, 2007, 16(3): 656-678. [22] Kulikovsky A A.Positive streamer between parallel plate electrodes in atmospheric pressure air[J]. Journal of Physics D: Applied Physics, 1997, 30(3): 441-450. [23] Tsai J H, Hsu C M, Hsu C C.Numerical simulation of downstream kinetics of an atmospheric pressure nitrogen plasma jet using laminar, modified laminar, and turbulent models[J]. Plasma Chemistry and Plasma Processing, 2013, 33(6): 1121-1135. [24] Plasma data exchange project[EB/OL]. 2018[2019-01-23]. http://www.lxcat.laplace.univ-tlse.fr. [25] Hagelaar G J M, Pitchford L C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models[J]. Plasma Sources Science and Technology, 2005, 14(4): 722-733. [26] Liu Xinghua, He Wei, Yang Fan, et al.Numerical simulation and experimental validation of direct current air corona discharge under atmospheric pressure[J]. Chinese Physics B, 2012, 21(7): 75201. [27] 王泽忠, 全玉生, 卢斌先. 工程电磁场[M]. 北京: 清华大学出版社, 2011. [28] 郑殿春. 气体放电数值仿真方法[M]. 北京: 科学出版社, 2016. [29] 梁曦东, 陈昌渔, 周远翔. 高电压工程[M]. 北京: 清华大学出版社, 2003. [30] 孟晓波, 梅红伟, 陈昌龙, 等. 绝缘介质表面流注发展特性的机理研究[J]. 中国电机工程学报, 2013, 33(22): 155-165. Meng Xiaobo, Mei Hongwei, Chen Changlong, et al.Research on characteristics of streamer propagation along insulation surfaces[J]. Proceedings of the CSEE, 2013, 33(22): 155-165. [31] 孟晓波, 梅红伟, 陈昌龙, 等. 气压与湿度对绝缘介质表面流注发展特性影响的试验研究[J]. 中国电机工程学报, 2014, 34(12): 1938-1947. Meng Xiaobo, Mei Hongwei, Chen Changlong, et al.Experimental research on influences of air pressure and humidity on characteristics of streamer pro- pagation along insulation surfaces[J]. Proceedings of the CSEE, 2014, 34(12): 1938-1947. [32] 翁明, 胡天存, 曹猛, 等. 电子入射角度对聚酰亚胺二次电子发射系数的影响[J]. 物理学报, 2015, 64(15): 456-462. Weng Ming, Hu Tiancun, Cao Meng, et al.Effects of electron incident angle on the secondary electron yield for polyimide[J]. Acta Physica Sinica, 2015, 64(15): 456-462. [33] 张博, 乌江, 郑晓泉. 改性聚酰亚胺表面稳定性与真空直流沿面闪络抑制方法研究[J]. 电工技术学报, 2019, 34(13): 2846-2853. Zhang Bo, Wu Jiang, Zheng Xiaoquan.Study of the surface stability of modified polyimide and the suppression method of surface flashover under DC voltage in vacuum[J]. Transactions of China Electro- technical Society, 2019, 34(13): 2846-2853. [34] 孙泽来. 纳秒脉冲下真空沿面放电的二次电子发射机制研究[D]. 北京: 华北电力大学, 2016. |
|
|
|