|
|
Methods for Characterizing Flexibilities from Demand-Side Resources and Their Applications in the Day-Ahead Optimal Scheduling |
Wu Jiechen, Ai Xin, Hu Junjie |
State Key Laboratory of Alternate Electrical Power System With Renewable Energy Sources North China Electric Power University Beijing 102206 China |
|
|
Abstract Due to the increasing penetration of distributed energy resources (DERs) in the distribution network and the electricity market reform which allows demand side resources to participate in the electricity market, the leverage of flexibilities from demand-side resources has attracted more and more attentions. This paper takes electric vehicle (EV) and heating ventilating & air conditioning (HVAC) as the typical demand-side resources. Considering the physical characteristics of equipment, the behaviors of occupants and environmental factors, a generalized virtual battery model (VB) is established for characterizing the flexibilities using an extreme energy circumstance method. On this basis, a day-ahead optimal scheduling model is developed for the transactive platform to participate in the wholesale market. The numerical results show that the energy schedule and reserve capacity can be determined by the general VB model. In addition, the proposed model is verified by simulation, and its superiority in terms of computational efficiency and information security is analyzed.
|
Received: 11 April 2019
Published: 12 May 2020
|
|
|
|
|
[1] 肖云鹏, 王锡凡, 王秀丽, 等. 面向高比例可再生能源的电力市场研究综述[J]. 中国电机工程学报, 2018, 38(3): 663-674. Xiao Yunpeng, Wang Xifan, Wang Xiuli, et al.Review on electricity market towards high proportion of renewable energy[J]. Proceedings of the CSEE, 2018, 38(3): 663-674. [2] 王成山, 李鹏, 于浩. 智能配电网的新形态及其灵活性特征分析与应用[J]. 电力系统自动化, 2018, 42(10): 13-21. Wang Chengshan, Li Peng, Yu Hao.Development and characteristic analysis of flexibility in smart distribution network[J]. Automation of Electric Power Systems, 2018, 42(10): 13-21. [3] 鲁宗相, 李海波, 乔颖. 高比例可再生能源并网的电力系统灵活性评价与平衡机理[J]. 中国电机工程学报, 2017, 37(1): 13-24. Lu Zongxiang, Li Haibo, Qiao Ying.Flexibility evaluation and supply/demand balance principle of power system with high-penetration renewable electricity[J]. Proceedings of the CSEE, 2017, 37(1): 13-24. [4] Hanif S, Massier T, Gooi H B, et al.Cost optimal integration of flexible buildings in congested distribution grids[J]. IEEE Transactions on Power Systems, 2017, 32(3): 2254-2266. [5] 胡俊杰, 王坤宇, 艾欣, 等. 交互能源:实现电力能源系统平衡的有效机制[J]. 中国电机工程学报, 2019, 39(4): 953-965. Hu Junjie, Wang Kunyu, Ai Xin, et al.Transactive energy: an effective mechanism for balancing electric energy system[J]. Proceedings of the CSEE, 2019, 39(4): 953-965. [6] 赵波, 汪湘晋, 张雪松, 等. 考虑需求侧响应及不确定性的微电网双层优化配置方法[J]. 电工技术学报, 2018, 33(14): 3284-3295. Zhao Bo, Wang Xiangjin, Zhang Xuesong, et al.Two-layer method of microgrid optimal sizing con- sidering demand-side response and uncertainties[J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3284-3295. [7] 祖其武, 牛玉刚, 邹媛媛, 等. 基于弹性负荷分时调度和多电源联合供电的微网经济运行[J]. 电力系统保护与控制, 2018, 46(4): 214-223. Zu Qiwu, Niu Yugang, Zou Yuanyuan, et al.Economic operation of mircrogrid based on elastic load sub-period dispatch and combined power supply of multiple energy[J]. Power System Protection and Control, 2018, 46(4): 214-223. [8] 徐建军, 王保娥, 闫丽梅, 等. 混合能源协同控制的智能家庭能源优化控制策略[J]. 电工技术学报, 2017, 32(12): 214-223. Xu Jianjun, Wang Baoe, Yan Limei, et al.The strategy of the smart home energy optimization control of the hybrid energy coordinated control[J]. Transactions of China Electrotechnical Society, 2017, 32(12): 214-223. [9] 卢锦玲, 於慧敏. 考虑风电相依结构的虚拟发电厂内部资源随机调度策略[J]. 电工技术学报, 2017, 32(17): 67-74. Lu Jinling, Yu Huimin.Stochastic scheduling strategy of resources in virtual power plant con- sidering wind power dependence structure[J]. Transactions of China Electrotechnical Society, 2017, 32(17): 67-74. [10] 平健, 陈思捷, 张宁, 等. 基于智能合约的配电网去中心化交易机制[J]. 中国电机工程学报, 2017, 37(13): 3682-3690. Ping Jian, Chen Sijie, Zhang Ning, et al.Decentra- lized transactive mechanism in distribution network based on smart contract[J]. Proceedings of the CSEE, 2017, 37(13): 3682-3690. [11] Barot S, Taylor J A.A concise, approximate representation of a collection of loads described by polytopes[J]. International Journal of Electrical Power & Energy Systems, 2017, 84: 55-63. [12] Sajjad I, Chicco G, Napoli R.Definitions of demand flexibility for aggregate residential loads[J]. IEEE Transactions on Smart Grid, 2016, 7(6): 2633-2643. [13] 李亚平, 姚建国, 雍太有, 等. 居民温控负荷聚合功率及响应潜力评估方法研究[J]. 中国电机工程学报, 2017, 37(19): 5519-5528. Li Yaping, Yao Jianguo, Yong Taiyou, et al.Estimation approach to aggregated power and response potential of residential thermostatically controlled loads[J]. Proceedings of the CSEE, 2017, 37(19): 5519-5528. [14] Müller F L, Szabó J, Sundström O, et al.Aggregation and disaggregation of energetic flexibility from distributed energy resources[J]. IEEE Transactions on Smart Grid, 2019, 10(2): 1205-1214. [15] Trangbaek K, Bendtsen J.Exact constraint aggre- gation with applications to smart grids and resource distribution[C]//51st Annual Conference on Decision and Control (CDC), Maui, USA, 2012: 4181-4186. [16] Zhao Lin, Zhang Wei, Hao He, et al.A geometric approach to aggregate flexibility modeling of thermo- statically controlled loads[J]. IEEE Transactions on Power Systems, 2017, 32(6): 4721-4731. [17] Barot S, Taylor J A.An outer approximation of the Minkowski sum of convex conic sets with application to demand response[C]//55th Conference on Decision and Control (CDC), Las Vegas, USA, 2016: 4233-4238. [18] Hao He, Somani A, Lian Jianming, et al.Generalized aggregation and coordination of residential loads in a smart community[C]//2015 IEEE International Con- ference on Smart Grid Communications (Smart Grid Comm), Miami, USA, 2015: 67-72. [19] Hao He, Wu Di, Lian Jianming, et al.Optimal coordination of building loads and energy storage for power grid and end user services[J]. IEEE Transa- ctions on Smart Grid, 2018, 4(2): 4335-4345. [20] Mathieu J L, Vayá M G, Andersson G.Uncertainty in the flexibility of aggregations of demand response resources[C]//Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 2013: 8052-8057. [21] 占恺峤, 胡泽春, 宋永华, 等. 含新能源接入的电动汽车有序充电分层控制策略[J]. 电网技术, 2016, 40(12): 3689-3695. Zhan Kaiqiao, Hu Zechun, Song Yonghua, et al.Electric vehicle coordinated charging hierarchical control strategy considering renewable energy generation integration[J]. Power System Technology, 2016, 40(12): 3689-3695. [22] Ulbig A, Andersson G.Analyzing operational flexibi- lity of electric power systems[J]. International Journal of Electrical Power & Energy Systems, 2015, 72: 155-164. [23] 吴界辰, 艾欣, 张艳, 等. 配售分离环境下高比例分布式能源园区电能日前优化调度[J]. 电网技术, 2018, 42(6): 1709-1717. Wu Jiechen, Ai Xin, Zhang Yan, et al.Day-ahead optimal scheduling for high penetration of distributed energy resources in community under separated distribution and retail operational environment[J]. Power System Technology, 2018, 42(6): 1709-1717. [24] 王毅, 张宁, 康重庆, 等. 电力用户行为模型: 基本概念与研究框架[J]. 电工技术学报, 2019, 34(10): 2056-2068. Wang Yi, Zhang Ning, Kang Chongqing, et al.Electrical consumer behavior model:basic concept and research framework[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2056-2068. [25] Margellos K, Goulart P, Lygeros J.On the road between robust optimization and the scenario approach for chance constrained optimization pro- blems[J]. IEEE Transactions on Automatic Control, 2014, 59(8): 2258-2263. [26] 吴界辰, 艾欣, 胡俊杰, 等. 计及不确定因素的需求侧灵活性资源优化调度[J]. 电力系统自动化, 2019, 43(14): 73-80, 89. Wu Jiechen, Ai Xin, Hu Junjie, et al.Optimal schedule of demand side flexible resource under uncertainty[J]. Automation of Electric Power Systems, 2019, 43(14): 73-80, 89. [27] Wang Andong, Li Rongling, You Shi.Development of a data driven approach to explore the energy flexibility potential of building clusters[J]. Applied Energy, 2018: 89-100. [28] Arif A, Wang Zhaoyu, Wang Jianhui, et al.Load modeling-a review[J]. IEEE Transactions on Smart Grid, 2018, 9(6): 5986-5999. |
|
|
|