|
|
Research on Integrated Parameter Optimization Configuration for Operational Boundary Improvement of Three-Multi-Terminal DC System |
Deng Wei1,2, Pei Wei1,2, Zhang Shizhong1,2, Kong Li1,2 |
1. Institute of Electrical Engineering Chinese Academy of Sciences Beijing 100190 China; 2. University of Chinese Academy of Sciences Beijing 100049 China |
|
|
Abstract Integration optimization is one of the key technologies for multi-terminal DC (MTDC) system. In this paper, an integrated parameter optimization configuration method for improving operational boundary is proposed for the three-terminal DC system. Firstly, the equivalent circuit and its characteristic model of MTDC system are established, and the influence of integrated parameters on system operational boundary is analyzed. Secondly, an integrated parameter multi-objective optimization model is proposed with the optimization goals of the smallest acreage difference between the stable area and the design area, and the lowest integration cost. Finally, the Pareto optimal solution set is solved by the NSGA-II algorithm, and the integrated parameter optimization configuration scheme is selected by the fuzzy clustering algorithm. The simulation analysis shows that the proposed method is effective and feasible, which can significantly improve the operational boundary of MTDC system while ensuring the system economics.
|
Received: 28 February 2019
Published: 24 April 2020
|
|
|
|
|
[1] 李佳琪, 陈健, 张文, 等. 高渗透率光伏配电网中电池储能系统综合运行控制策略[J]. 电工技术学报, 2019, 34(2): 437-446. Li Jiaqi, Chen Jian, Zhang Wen, et al.Integrated control strategy for battery energy storage systems in distribution networks with high photovoltaic penetr- ation[J]. Transactions of China Electrotechnical Society, 2019, 34(2): 437-446. [2] 张勇军, 刘子文, 宋伟伟, 等. 直流配电系统的组网技术及其应用[J]. 电力系统自动化, 2019, 43(23): 39-49. Zhang Yongjun, Liu Ziwen, Song Weiwei, et al.Networking technology and its application of DC distribution system[J]. Automation of Electric Power Systems, 2019, 43(23): 39-49. [3] 付菊霞, 陈洁, 滕扬新, 等. 基于集合经验模态分解的风电混合储能系统能量管理协调控制策略[J]. 电工技术学报, 2019, 34(10): 2038-2046. Fu Juxia, Chen Jie, Teng Yangxin, et al.Energy management coordination control strategy for wind power hybrid energy storage system based on EEMD[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2038-2046. [4] 谈竹奎, 徐玉韬, 班国邦, 等. 基于主从控制的交直流混合微电网多模式运行与切换策略[J]. 电气技术, 2018, 19(9): 60-64. Tan Zhukui, Xu Yutao, Ban Guobang, et al.Multi- mode operation and transition for hybrid AC-DC microgrid based on master-slave control[J]. Electrical Engineering, 2018, 19(9): 60-64. [5] 吴红斌, 杨超, 陈煜, 等. 基于电压源型换流器的多端直流配电网潮流计算[J]. 电力系统自动化, 2018, 42(11): 79-85. Wu Hongbin, Yang Chao, Chen Yu, et al.VSC based power flow calculation of multi-terminal DC distri- bution network[J]. Automation of Electric Power Systems, 2018, 42(11): 79-85. [6] Andrade A M S S, Schuch L, Martins M L D S. High step-u PV module integrated converter for PV energy harvest in FREEDM systems[J]. IEEE Transactions on Industry Applications, 2017, 53(2): 1138-1148. [7] Bifaretti S, Zanchetta P, Watson A, et al.Advanced power electronic conversion and control system for universal and flexible power management[J]. IEEE Transactions on Smart Grid, 2011, 2(2): 231-243. [8] 刘国伟, 赵宇明, 袁志昌, 等. 深圳柔性直流配电示范工程技术方案研究[J]. 南方电网技术, 2016, 10(4): 1-7. Liu Guowei, Zhao Yuming, Yuan Zhichang, et al.Study on demonstration project technical scheme of VSC-DC distribution system in Shenzhen[J]. Sou- thern Power System Technology, 2016, 10(4): 1-7. [9] 李微, 周雪松, 马幼捷, 等. 三端口直流微网母线电压控制器及多目标控制[J]. 电工技术学报, 2019, 34(1): 92-102. Li Wei, Zhou Xuesong, Ma Youjie, et al.Three-port DC microgrid bus voltage controller and multi- objective control[J]. Transactions of China Electro- technical Society, 2019, 34(1): 92-102. [10] 黄云辉, 宋泽凡, 唐金锐, 等. 连接弱电网的并网变换器直流电压时间尺度稳定器的设计与分析[J]. 电工技术学报, 2018, 33(增刊1): 189-196. Huang Yunhui, Song Zefan, Tang Jinrui, et al.Design and analysis of DC-link voltage stabilizer for voltage source converter as connected to weak grid[J]. Transactions of China Electrotechnical Society, 2018, 33(S1): 189-196. [11] Rahimi A M, Emadi A.Active damping in DC/DC power electronic converters: a novel method to overcome the problems of constant power loads[J]. IEEE Transactions on Industrial Electronics, 2009, 56(5): 1428-1439. [12] Kongpan A, Theppanom S, Serhiy B, et al.Adaptive stabilization of uncontrolled rectifier based AC-DC power systems feeding constant power loads[J]. IEEE Transactions on Power Electronics, 2018, 33(10): 8927-8935. [13] Ali E, Alireza K, Claudio H, et al.Constant power loads and negative impedance instability in auto- motive systems: definition, modeling, stability, and control of power electronic converters and motor drives[J]. IEEE Transactions on Vehicular Tech- nology, 2006, 55(4): 1112-1125. [14] 倪喜军. 高压SiC器件在FREEDM系统中的应用[J]. 电源学报, 2016, 14(4): 139-146. Ni Xijun.High voltage SiC device applied to FREEDM systems center[J]. Journal of Power Supply, 2016, 14(4): 139-146. [15] 蔡晓燕, 许敬涛, 刘继茂, 等. 光伏逆变器中DC- link电容的选型计算[J]. 电力电子技术, 2012, 46(4): 43-44. Cai Xiaoyan, Xu Jingtao, Liu Jimao, et al.Analytic calculation of the DC-link capacitor for PV inver- ters[J]. Power Electronics, 2012, 46(4): 43-44. [16] Jeyadevi S, Baskar S, Babulal C K, et al.Solving multi-objective optimal reactive power dispatch using modified NSGA-II[J]. International Journal of Electrical Power & Energy Systems, 2011, 33(2): 219-228. [17] Agrawal S, Panigrahi B K, Tiwari M K.Multio- bjective particle swarm algorithm with fuzzy clustering for electrical power dispatch[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(5): 529-541. |
|
|
|