|
Abstract To the power system of single hydropower unit, this paper analyses the influence of limit of governor system on ultra-low frequency oscillations (ULFO) by the phase portrait method, and reveals that one of the mathematical mechanisms of ULFO is non-smooth bifurcation. In detail, firstly, the oscillation phenomenon of non-smooth system caused by the saturation of limit is analyzed, illustrating that one of the reasons for the oscillation of general dynamic systems is the non-smooth bifurcation associated with the saturation of limit. Secondly, a simple mathematical model, state equation and balance point characteristics of the power system of single hydropower unit with limiting link are given. And then, the dynamic characteristics of the system phase portrait with/without limit cycle under different initial conditions and with/without limit are analyzed, which show that the saturation of the limit of governor system and the large enough initial value are one of the reasons for the system ULFO and reveal the non-smooth bifurcation characteristics of the system for initial values. Finally, the influence of different system parameters on the dynamic characteristics of the system with/without limit cycle is analyzed, and the non-smooth bifurcation characteristics of system parameters under certain initial values are revealed.
|
Received: 19 April 2019
Published: 07 April 2020
|
|
|
|
|
[1] 倪以信, 陈寿孙, 张宝霖. 动态电力系统的理论和分析[M]. 北京: 清华大学出版社, 2002. [2] 谢剑, 成业, 王晓茹. 基于NExT和PRCE方法的低频振荡分析[J]. 电工技术学报, 2018, 33(1): 121-130. Xie Jian, Cheng Ye, Wang Xiaoru.Estimation of electromechanical oscillation modes based on NExT-PRCE method[J]. Transactions of China Electrotechnical Society, 2018, 33(1): 121-130. [3] 赵妍, 李志民, 李天云. 低频振荡模态参数辨识的共振稀疏分解SSI分析方法[J]. 电工技术学报, 2016, 31(2): 136-144. Zhao Yan, Li Zhimin, Li Tianyun.Low frequency oscillation modal parameter identification using resonance-based sparse signal decomposition and SSI method[J]. Transactions of China Electrotechnical Society, 2016, 31(2): 136-144. [4] 陈月辉, 张文朝, 徐遐龄, 等. 基于前K最短路径的电力系统低频振荡源定位方法[J]. 电力系统保护与控制, 2017, 45(13): 117-123. Chen Yuehui, Zhang Wenchao, Xu Xialing, et al.Locating method of low frequency oscillation source based on K shortest paths[J]. Power System Protection and Control, 2017, 45(13): 117-123. [5] 龚鸿, 江伟, 王渝红, 等. 基于静止同步补偿器与直流调制协调控制的低频振荡抑制方法[J]. 电工技术学报, 2017, 32(6): 67-75. Gong Hong, Jiang Wei, Wang Yuhong, et al.A survey on damping low frequency oscillation based on coordination strategy of static synchronized compensator modulation[J]. Transactions of China Electrotechnical Society, 2017, 32(6): 67-75. [6] Butti D, Mangipudi S, Rayapudi S.Interconnected multi-machine power system stabilizer design using whale optimization algorithm[J]. Protection and Control of Modern Power Systems, 2019, 4(4): 13-23. [7] 周靖皓, 江崇熙, 甘德强, 等. 基于值集法对云南电网超低频振荡的稳定分析[J]. 电网技术, 2017, 41(10): 3147-3152. Zhou Jinghao, Jiang Chongxi, Gan Deqiang, et al.Stability analysis of ultra-low frequency oscillation of Yunnan power grid based on value set approach[J]. Power System Technology, 2017, 41(10): 3147-3152. [8] 路晓敏, 陈磊, 陈亦平, 等. 电力系统一次调频过程的超低频振荡分析[J]. 电力系统自动化, 2017, 41(16): 64-70. Lu Xiaomin, Chen Lei, Chen Yiping, et al.Ultra-low-frequency oscillation of power system primary frequency regulation[J]. Automation of Electric Power Systems, 2017, 41(16): 64-70. [9] 王官宏, 于钊, 张怡, 等. 电力系统超低频振荡模式排查及分析[J]. 电网技术, 2016, 40(8): 2324-2330. Wang Guanhong, Yu Zhao, Zhang Yi, et al.Troubleshooting and analysis of ultra-low frequency oscillation mode in power system[J]. Power System Technology, 2016, 40(8): 2324-2330. [10] 刘春晓, 张俊峰, 陈亦平, 等. 异步联网方式下云南电网超低频振荡的机理分析与仿真[J]. 南方电网技术, 2016, 10(7): 29-34. Liu Chunxiao, Zhang Junfeng, Chen Yiping, et al.Mechanism analysis and simulation on ultra-low frequency oscillation of Yunnan power grid in asynchronous interconnection mode[J]. Southern Power System Technology, 2016, 10(7): 29-34. [11] 肖湘宁, 李伟, 罗超, 等. 特高压直流孤岛运行特性与稳定控制研究综述[J]. 电工技术学报, 2017, 32(10): 1-11. Xiao Xiangning, Li Wei, Luo Chao, et al.Survey on operational characteristics and stability control of ultra-HVDC transmission system in islanded mode[J]. Transactions of China Electrotechnical Society, 2017, 32(10): 1-11. [12] 陈怡君. 由局部控制器失稳引发的类强迫超低频振荡辨识及抑制[D]. 北京: 清华大学, 2018. [13] Yijun Chen, Feng Liu, Chen Shen, et al.Mitigating a class of ultra-low-frequency oscillations in hydro-turbine dominant power systems[C]//2018 Biennial International Conference on Power and Energy Systems: Towards Sustainable Energy(PESTSE), Bangalore, 2018. [14] 张建新, 刘春晓, 陈亦平, 等. 异步联网方式下云南电网超低频振荡的抑制措施与试验[J]. 南方电网技术, 2016, 10(7): 35-39. Zhang Jianxin, Liu Chunxiao, Chen Yiping, et al.Countermeasures and experiments on ultra-low frequency oscillation of Yunnan power grid in asynchronous interconnection mode[J]. Southern Power System Technology, 2016, 10(7): 35-39. [15] 王菲, 刘建琴, 韩丰, 等. 应用直流调制改善水电能源基地交流电网运行特性[J]. 电网技术, 2017, 41(12): 3911-3916. Wang Fei, Liu Jianqin, Han Feng, et al.Application of DC modulation to improving operation characteristics of hydropower base grid[J]. Power System Technology, 2017, 41(12): 3911-3916. [16] Gencoglu C, Tor O B, Cebeci E, et al.Assessment of the effect of hydroelectric power plants' governor settings on low frequency inter area oscillations[C]// IEEE International Conference on Power System Technology, Hangzhou, 2010: 1-8. [17] Villegas H N.Electromechanical oscillations in hydro-dominant power systems: an application to the Colombian Power System [D]. Ames, lowa: Lowa State University, 2011. [18] 付超, 柳勇军, 涂亮, 等. 云南电网与南方电网主网异步联网系统试验分析[J]. 南方电网技术, 2016, 10(7): 1-5, 12. Fu Chao, Liu Yongjun, Tu Liang, et al.Experiment and analysis on asynchronously interconnected system of Yunnan power grid and main grid of China Southern power grid[J]. Southern Power System Technology, 2016, 10(7): 1-5, 12. [19] 陈刚, 丁理杰, 李旻, 等. 异步联网后西南电网安全稳定特性分析[J]. 电力系统保护与控制, 2018, 46(7): 76-82. Chen Gang, Ding Lijie, Li Min, et al.Stability characteristics of southwest China power grid after asynchronous interconnection[J]. Power System Protection and Control, 2018, 46(7): 76-82. [20] Ji W, Venkatasubramanian V.Hard-limit induced chaos in a single-machine-infinite-bus power system[C]//Proceedings of the IEEE Conference on Decision and Control, New Orleans, LA, 1995(4): 3465-3470. [21] Ji W, Venkatasubramanian V.Hard-limit induced chaos in a fundamental power system model[J]. International Journal of Electronics Power and Energy System, 1996, 18(5): 279-295. [22] Jiang X, Venkatasubramanian V, Schattler H, et al.Hardlimit related stability phenomena in the power system[C]//Proceedings of International Conference on Control Applications, Albany, NY, 1995: 63-72. [23] Venkatasubramanian V.Stability boundary analysis of nonlinear dynamics subject to state limits[C]//Hawaii International Conference on System Sciences, IEEE Computer Society, Maui, HI, 2001: 2024. [24] 戴义平, 张镇一, 蔡元基, 等. 非线性因素与中间再热透平调节系统的稳定性[J]. 汽轮机技术, 1991(1): 8-14, 56. Dai Yiping, Zhang Zhenyi, Cai Yuanji, et al.Nonlinear factors and stability of intermediate reheat turbine regulation system[J]. Turbine Technology, 1991(1): 8-14, 56. [25] Donde V, Hiskens I A.Dynamic performance assessment: grazing and related phenomena[J]. IEEE Transactions on Power Systems, 2005, 20(4): 1967-1975. [26] 韦李军, 黄萌, 孙建军, 等. 带恒功率负载的光伏-储能混合发电系统非线性行为分析[J]. 电工技术学报, 2017, 32(7): 128-137. Wei Lijun, Huang Meng, Sun Jianjun, et al.Nonlinear analysis of photovoltaic battery hybrid power system with constant power loads[J]. Transactions of China Electrotechnical Society, 2017, 32(7): 128-137. [27] 赵雅博, 张毅威, 陈磊, 等. 电力系统机电振荡的非线性现象[J]. 电网技术, 2012, 36(10): 172-177. Zhao Yabo, Zhang Yiwei, Chen Lei, et al.Study on nonlinearity in power system electro-mechanical oscillation[J]. Power System Technology, 2012, 36(10): 172-177. [28] 邓集祥, 纪晶, 邓斌. 基于复合模式的电力系统超低频振荡产生机理[J]. 电工技术学报, 2007, 22(8): 84-89. Deng Jixiang, Ji Jing, Deng Bin.The generation mechanism of ultra-low frequency oscillation in power systems based on combination modes[J]. Transactions of China Electrotechnical Society, 2007, 22(8): 84-89. [29] 潘道明. 柬埔寨达岱电厂基于自适应控制策略的调速器系统分析[J]. 电气技术, 2016, 17(7): 87-92. Pan Daoming.The governor systems analysis based on adaptive control strategy in DadaiHydropower Station of Cambodia[J]. Electrical Engineering, 2016, 17(7): 87-92. |
|
|