|
|
Research on Stratified Optimal Load Shedding Strategy for Receiving End Power Grid |
Wang Zengping1, Zhu Shaoxuan1, Wang Tong1, Qin Hongxia2 |
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China; 2. Beijing Sifang Automation Company Limited by Shares Beijing 100085 China |
|
|
Abstract Large-scale power flow transferring overload occurs in the receiving end power grid after the fault removal of EHV and UHV transmission lines, which may lead to cascading trips or even large-scale blackouts. In view of this phenomenon, a hierarchical optimized load shedding strategy for receiving end power grid is proposed. Firstly, considering the characteristics of different voltage levels, a hierarchical model of cross-voltage levels for receiving-end power grids is established. On the one hand, for 500 kV and above voltage level system, taking the minimum total load shedding as the objective function, using improved particle swarm optimization algorithm to establish an optimal load shedding scheme. On the other hand, for the voltage level system below 500 kV, the AHP-fuzzy comprehensive evaluation method is used to construct the lowest comprehensive cost load-shedding plan. Once the control task is received, the load-shedding task is quickly distributed step by step from 500 kV substation to downward according to the plan, and finally the hierarchical optimized load-shedding is realized. New England 10-machine 39-bus example shows that compared with other strategies, this strategy can effectively eliminate line overload and reduce computing time significantly, which is conducive to the realization of on-line engineering applications.
|
Received: 04 April 2019
Published: 12 March 2020
|
|
|
|
|
[1] 张保会. 加强继电保护与紧急控制系统的研究提高互联电网安全防御能力[J]. 中国电机工程学报, 2004, 24(7): 1-6. Zhang Baohui.Strengthen the protection relay and urgency control systems to improve the capability of security in the interconnected power network[J]. Proceedings of the CSEE, 2004, 24(7): 1-6. [2] 顾雪平, 刘雨濛, 王涛, 等. 基于结构平衡理论的电网自组织临界态辨识[J]. 电工技术学报, 2018, 33(17): 4136-4145. Gu Xueping, Liu Yumeng, Wang Tao, et al.Self-organized critical state identification of power systems based on structural equilibrium theory[J]. Transactions of China Electrotechnical Society, 2018, 33(17): 4136-4145. [3] 余剑波. 电力系统连锁故障预警模型研究[J]. 电气技术, 2017, 18(10): 88-91. Yu Jianbo.Study on early warning model of cascading failures in power system[J]. Electrical Engineering, 2017, 18(10): 88-91. [4] 徐岩, 吕彬, 王增平. 基于广域测量系统的潮流转移识别方法[J]. 中国电机工程学报, 2013, 33(28): 154-160. Xu Yan, Lü Bin, Wang Zengping.A power flow transfer identification scheme based on WAMS[J]. Proceedings of the CSEE, 2013, 33(28): 154-160. [5] 马瑞, 陶俊娜, 徐慧明. 基于潮流转移因子的电力系统连锁跳闸风险评估[J]. 电力系统自动化, 2008, 32(12): 17-21. Ma Rui, Tao Junna, Xu Huiming.Power flow transfer factor based risk assessment of power system cascading trips[J]. Automation of Electric Power System, 2008, 32(12): 17-21. [6] 林涛, 毕如玉, 陈汝斯, 等. 基于二阶锥规划的计及多种快速控制手段的综合安全校正策略[J]. 电工技术学报, 2020, 35(1): 167-178. Lin Tao, Bi Ruyu, Chen Rusi, et al.Comprehensive security correction strategy based on second-order cone programming considering multiple fast control measures[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 167-178. [7] 赵强, 王丽敏, 刘肇旭, 等. 全国电网互联系统频率特性及低频减载方案[J]. 电网技术, 2009, 33(8): 35-40. Zhao Qiang, Wang Limin, Liu Zhaoxu, et al.Study on dynamic frequency characteristics and coordinative under-frequency load shedding scheme for nationwide interconnected power grid of China[J]. Power System Technology, 2009, 33(8): 35-40. [8] 李爱民, 蔡泽祥. 基于轨迹分析的互联电网频率动态特性及低频减载的优化[J]. 电工技术学报, 2009, 24(9): 171-177. Li Aimin, Cai Zexiang.Frequency dynamics analysis and load shedding assessment based on the dynamic simulation trajectory of interconnected power system[J]. Transactions of China Electrotechnical Society, 2009, 24(9): 171-177. [9] 和敬涵, 柏丹丹, 王小君, 等. 低频减载综合代价最优化算法[J]. 电网技术, 2013, 37(12): 3461-3466. He Jinghan, Bai Dandan, Wang Xiaojun, et al.An optimal algorithm of comprehensive cost for under frequency load shedding[J]. Power System Technology, 2013, 37(12): 3461-3466. [10] 陈汝斯, 林涛, 余光正, 等. 计及电能质量影响的智能配电网孤岛划分策略[J]. 电工技术学报, 2016, 31(增刊2): 150-158. Chen Rusi, Lin Tao, Yu Guangzheng, et al.Island separation strategy of smart distribution grid considering the effect of power quality factors[J]. Transactions of China Electrotechnical Society, 2016, 31(S2): 150-158. [11] 方勇杰. 英国“8·9”停电事故对频率稳定控制技术的启示[J]. 电力系统自动化, 2019, 43(24): 1-7. Fang Yongjie.Reflections on frequency stability control technology based on the blackout event of 9 August 2019 in UK[J]. Automation of Electric Power System, 2019, 43(24): 1-7. [12] 韦肖燕, 李欣然, 钱军, 等. 采用储能电源辅助的暂态稳定紧急控制方法[J]. 电工技术学报, 2017, 32(18): 292-306. Wei Xiaoyan, Li Xinran, Qian Jun, et al.Power system transient stability emergency control method assisted by energy storage[J]. Transactions of China Electrotechnical Society, 2017, 32(18): 292-306. [13] 滕林, 刘万顺, 貟志皓, 等. 电力系统暂态稳定实时紧急控制的研究[J]. 中国电机工程学报, 2003, 23(1): 65-70. Teng Lin, Liu Wanshun, Yun Zhihao, et al.Study of real-time power system transient stability emegency control[J]. Proceedings of the CSEE, 2003, 23(1): 64-69. [14] 姜涛, 李筱婧, 李国庆, 等. 基于广域量测信息的负荷裕度灵敏度计算新方法[J]. 电工技术学报, 2016, 31(21): 102-113. Jiang Tao, Li Xiaojing, Li Guoqing, et al.A novel wide-area measurement-based approach to loading margin sensitivity analysis in power systems[J]. Transactions of China Electrotechnical Society, 2016, 31(21): 102-113. [15] 王胜明, 徐泰山, 陈刚, 等. 电网安全稳定控制系统当值策略可实施评估方法[J]. 电力系统自动化, 2019, 43(24): 126-134. Wang Shengming, Xu Taishan, Chen Gang, et al.Practicability assessment method of duty strategy for security and stability control system in power grid[J]. Automation of Electric Power Systems, 2019, 43(24): 126-134. [16] 姜臻, 苗世洪, 刘沛, 等. 一种基于粒子群优化算法的转移潮流控制策略[J]. 电力系统自动化, 2010, 34(18): 16-20, 31. Jiang Zhen, Miao Shihong, Liu Pei, et al.A particle swarm optimization based power flow transferring control strategy[J]. Automation of Electric Power Systems, 2010, 34(18): 16-20, 31. [17] 徐慧明, 毕天姝, 黄少锋, 等. 基于广域同步测量系统的预防连锁跳闸控制策略[J]. 中国电机工程学报, 2007, 27(19): 32-38. Xu Huiming, Bi Tianshu, Huang Shaofeng, et al.Study on wide area measurement system based on control strategy to prevent cascading trips[J]. Proceedings of the CSEE, 2007, 27(19): 32-38. [18] 李响, 张国庆, 郭志忠. 基于输电断面N-1静态安全潮流约束的联切负荷方案[J]. 电力系统自动化, 2004, 28(22): 42-44. Li Xiang, Zhang Guoqing, Guo Zhizhong.Scheme for load-shedding based on the transmission interface N-1 static safety power flow restriction[J]. Automation of Electric Power System, 2004, 28(22): 42-44. [19] 邱关源. 电路[M]. 5版. 北京: 高等教育出版社, 2006. [20] 刘军, 张彬彬, 赵婷. 基于模糊评价的风电场有功功率分配算法[J]. 电工技术学报, 2019, 34(4): 786-794. Liu Jun, Zhang Binbin, Zhao Ting.Research on wind farm active power dispatching algorithm[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 786-794. [21] 赵霞, 赵成勇, 贾秀芳, 等. 基于可变权重的电能质量模糊综合评价[J]. 电网技术, 2005, 29(6): 11-16. Zhao Xia, Zhao Chengyong, Jia Xiufang, et al.Fuzzy synthetic evaluation of power quality based on changeable weight[J]. Power System Technology, 2005, 29(6): 11-16. [22] 熊德国, 鲜学福. 模糊综合评价方法的改进[J]. 重庆大学学报: 自然科学版, 2003, 26(6): 93-95. Xiong Deguo, Xian Xuefu.Improvement of fuzzy comprehensive evaluation method[J]. Journal of Chongqing University: Natural Science Edition, 2003, 26(6): 93-95. [23] 王文彬, 伍小生, 朱傲, 等. 基于层次分析法的配电网“低电压”智能规划与综合治理评估技术研究及应用[J]. 电工技术学报, 2018, 33(增刊2): 596-607. Wang Wenbin, Wu Xiaosheng, Zhu Ao, et al.Research and application of low-voltage intelligent planning and comprehensive treatment evaluation technology for distribution network based on analytic hierarchy process[J]. Transactions of China Electrotechnical Society, 2018, 33(S2): 596-607. [24] 金菊良, 魏一鸣, 丁晶. 基于改进层次分析法的模糊综合评价模型[J]. 水利学报, 2004(3): 65-70. Jin Juliang, Wei Yiming, Ding Jing.Fuzzy comprehensive evaluation model based on improved analytic hierarchy process[J]. Journal of Hydraulic Engineering, 2004(3): 65-70. [25] 吴军, 涂光瑜, 罗毅, 等. 电力系统分层紧急负荷控制[J]. 电力系统自动化, 2006, 30(20): 26-31. Wu Jun, Tu Guangyu, Luo Yi, et al.Hierarchical load emergency control of power system[J]. Automation of Electric Power Systems, 2006, 30(20): 26-31. |
|
|
|