|
|
Analysis of Airgap Field Modulation Behavior and Torque Component in Electric Machines |
Cheng Ming, Wen Honghui, Zeng Yu, Jiang Yongjiang |
School of Electrical Engineering Southeast University Nanjing 210096 China |
|
|
Abstract The synchronous and asynchronous modulation behaviors are the most basic modulation principles in electric machines. However, the relationship between synchronous/ asynchronous modulation behavior and torque component is complicated, whose key characteristics are defined, compared, and exemplified based on the “general airgap field modulation theory” in this paper. The torque components of general magnetic field modulated machines are summarized and classified, and an important rule is expounded. Based on the theoretical analysis, this paper studies the possible operation modes, existence conditions and torque components of brushless doubly-fed induction machines (BDFIM), and summarizes the similarities and differences between it and the electrically excited synchronous machine in single-fed synchronization mode. The topology of the BDFM with composite rotor is depicted, and the role of auxiliary short-circuited coils and the modulation operator are provided qualitatively, based on which the potential advantages on the magnetic field coupling ability and average electromagnetic torque are discussed quantitatively. Finally, the modulation behaviors and torque characteristics of field modulated machines featuring simple salient poles are analyzed in a unified way.
|
Received: 13 March 2019
Published: 12 March 2020
|
|
|
|
|
[1] 程明, 韩鹏, 魏新迟. 无刷双馈风力发电机的设计、分析与控制[J]. 电工技术学报, 2016, 31(19): 37-53. Cheng Ming, Han Peng, Wei Xinchi.Design, analysis and control of brushless doubly-fed generators for wind power application[J]. Transactions of China Electrotechnical Society, 2016, 31(19): 37-53. [2] 陈正方, 王淑红, 高若中, 等. 一种笼型转子无刷双馈电机的磁链观测方法[J]. 电工技术学报, 2018, 33(23): 5402-5409. Chen Zhengfang, Wang Shuhong, Gao Ruozhong, et al.A flux linkage observation method of cage-rotor brushless doubly-fed machine[J]. Transactions of China Electrotechnical Society, 2018, 33(23): 5402-5409. [3] Lawrenson P J, Stephenson J M, Blenkinsop P T, et al.Variable-speed switched reluctance motors[J]. IEEE Proceedings B-Electric Power Application, 1980, 127(4): 253-265. [4] 马雯旻, 王杜, 曲荣海, 等. 基于有取向硅钢的轴向磁通开关磁阻电机准三维解析分析与设计[J]. 电工技术学报, 2018, 33(17): 4069-4077. Ma Wenmin, Wang Du, Qu Ronghai, et al.Quasi-three-dimensional analysis and design of an axial flux switched reluctance motor based on grain oriented silicon steel[J]. Transactions of China Electrotechnical Society, 2018, 33(17): 4069-4077. [5] Cheng Ming, Hua Wei, Zhao Wenxiang, et al.Overview of stator-permanent magnet brushless machines[J]. IEEE Transactions on Industrial Electronics, 2011, 58(11): 5087-5101. [6] 丁强, 王晓琳, 邓智泉, 等. 大气隙磁通切换无轴承永磁电机径向力绕组设计与比较[J]. 电工技术学报, 2018, 33(11): 2403-2413. Ding Qiang, Wang Xiaolin, Deng Zhiquan, et al.Design and comparison of radial force winding configurations for wide air-gap flux-switching bearingless permanent-magnet motor[J]. Transactions of China Electrotechnical Society, 2018, 33(11): 2403-2413. [7] Toba A, Lipo T A.Novel dual-excitation permanent magnet vernier machine[C]//Conference Record of IEEE IAS Annual Meeting, Phoenix, AZ, USA 1999, 4: 2539-2544. [8] 李岱岩, 白保东, 杨晨, 等. 基于调磁块阵列的永磁游标电机研究[J]. 电工技术学报, 2018, 33(2): 359-366. Li Daiyan, Bai Baodong, Yang Chen, et al.Study of permanent magnet vernier machine by using magnetic tuning block array[J]. Transactions of China Electrotechnical Society, 2018, 33(2): 359-366. [9] Chau K T, Zhang Dong, Jiang J Z, et al.Design of a magnetic-geared outer-rotor permanent-magnet brushless motor for electric vehicles[J]. IEEE Transactions on Magnetics, 2007, 43(4): 2504-2506. [10] 周鹗. 电机学[M]. 北京: 水利电力出版社, 1988. [11] 汤蕴璆. 电机学—机电能量转换[M]. 北京: 机械工业出版社, 1982. [12] 程明, 张淦, 花为. 定子永磁型无刷电机系统及其关键技术综述[J]. 电工技术学报, 2014, 24(29): 5204-5220. Cheng Ming, Zhang Gan, Hua Wei.Overview of stator permanent magnet brushless machine systems and their key technologies[J]. Transactions of China Electrotechnical Society, 2014, 24(29): 5204-5220. [13] Cheng Ming, Han Peng, Hua Wei.General airgap field modulation theory for electrical machines[J]. IEEE Transactions on Industrial Electronics, 2017, 64(8): 6063-6074. [14] Cheng Ming, Wen Honghui, Han Peng, et al.Analysis of airgap field modulation principle of simple salient poles[J]. IEEE Transactions on Industrial Electronics, 2019, 66(4): 2628-2638. [15] Wu Z Z, Zhu Z Q.Analysis of magnetic gearing effect in partitioned stator switched flux PM machines[J]. IEEE Transactions on Energy Conversion, 2016, 31(4): 1239-1249. [16] Han Peng, Cheng Ming, Wei Xinchi, et al.Modeling and performance analysis of a dual-stator brushless doubly-fed induction machine based on spiral vector theory[J]. IEEE Transactions on Industrial Application, 2016, 52(2): 1380-1389. [17] 张凤阁, 王凤翔, 王正. 不同转子结构无刷双馈电机稳态运行特性的对比实验研究[J]. 中国电机工程学报, 2002, 22(4): 52-55. Zhang Fengge, Wang Fengxiang, Wang Zheng.Comparative experiment study on the performance of doubly-fed brushless machine with different rotor structures[J]. Proceedings of the CSEE, 2002, 22(4): 52-55. [18] 于思洋. 兆瓦级复合转子无刷双馈风力发电机分析与设计方法研究[D]. 沈阳: 沈阳工业大学, 2018. [19] 韩鹏. 双定子无刷双馈电机设计与驱动控制[D]. 南京: 东南大学, 2017. [20] Zhang Fengge, Wang Hao, Jia Guanglong, et al.Effects of design parameters on performance of brushless electrically excited synchronous reluctance generator[J]. IEEE Transactions on Industrial Electronics, 2018, 65(11): 9179-9189. [21] 蒋晓东, 张凤阁, 周党生, 等. 双定子笼障转子无刷双馈发电机冷却空气流变特性数值分析[J]. 电工技术学报, 2019, 34(3): 466-473. Jiang Xiaodong, Zhang Fengge, Zhou Dangsheng, et al.Numerical analysis of cooling air flow characteristic for double stator cage-barrier rotor brushless doubly-fed generator[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 466-473. [22] Wen Honghui, Cheng Ming, Jiang Yunlei, et al.Analysis of airgap field modulation principle of flux guides[C]//IEEE Energy Conversion Congress and Exposition (ECCE), Portland, USA, 2018: 7302-7309. [23] Zhang Fengge, Yu Siyang, Wang Yutao, et al.Design and performance comparisons of brushless doubly fed generators with different rotor structures[J]. IEEE Transactions on Industrial Electronics, 2019, 66(1): 631-640. |
|
|
|