[1] 李滨, 李星辰, 白晓清, 等. 电力市场下配电网可中断负荷控制策略研究[J]. 中国电机工程学报, 2018, 38(22): 6573-6582. Li Bin, Li Xingchen, Bai Xiaoqing, et al.A research on the IL control strategy of distribution network in electricity market[J]. Proceedings of the CSEE, 2018, 38(22): 6573-6582. [2] 郭红霞, 白浩, 刘磊, 等. 统一电能交易市场下的虚拟电厂优化调度模型[J]. 电工技术学报, 2015, 30(23): 136-145. Guo Hongxia, Bai Hao, Liu Lei, et al.Optimal scheduling model of virtual power plant in a unified electricity trading market[J]. Transactions of China Electrotechnical Society, 2015, 30(23): 136-145. [3] 张赢, 董立军, 黄雯. 国内需求响应发展障碍分析及展望[J]. 电气技术, 2017, 18(7): 1-10. Zhang Ying, Dong Lijun, Huang Wen.Analysis on development obstacles of demand response and its outlook[J]. Electrical Technology, 2017, 18(7): 1-10. [4] 孙建军, 张世泽, 曾梦迪, 等. 考虑分时电价的主动配电网柔性负荷多目标优化控制[J]. 电工技术学报, 2018, 33(2): 401-412. Sun Jianjun, Zhang Shize, Zeng Mengdi, et al.Multi- objective optimal control for flexible load in active distribution network considering time-of-use tariff[J]. Transactions of China Electrotechnical Society, 2018, 33(2): 401-412. [5] Samadi P, Wong V W S, Schober R. Load scheduling and power trading in systems with high penetration of penewable energy resources[J]. IEEE Transactions on Smart Grid, 2016, 7(4): 1802-1812. [6] 杨晓东, 张有兵, 翁国庆, 等. 基于虚拟电价的电动汽车充放电优化调度及其实现机制研究[J]. 电工技术学报, 2016, 31(17): 52-62. Yang Xiaodong, Zhang Youbing, Weng Guoqing, et al.Virtual time-of-use tariffs based optimal scheduling and implementation mechanism of electric vehicles charging and discharging[J]. Transactions of China Electrotechnical Society, 2016, 31(17): 52-62. [7] 贾星蓓, 窦春霞, 岳东, 等. 基于多代理系统的微电网多尺度能量管理[J]. 电工技术学报, 2016, 31(17): 63-73. Jia Xingbei, Dou Chunxia, Yue Dong, et al.Multiple- time-scales optimal energy management in microgrid system based on multi-agent-system[J]. Transactions of China Electrotechnical Society, 2016, 31(17): 63-73. [8] 张旭升, 李瑞生, 黄利军, 等. 基于分层储能的主动配电网需求响应控制策略研究及实现[J]. 电力系统保护与控制, 2017, 45(15): 40-49. Zhang Xusheng, Li Ruisheng, Huang Lijun, et al.Research and application on demand response based on hierarchical power storage[J]. Power System Protection and Control, 2017, 45(15): 40-49. [9] 孙博宇, 喻洁, 梅军, 等. 考虑可调负荷集群响应不确定性的联合调度模型[J]. 电力系统保护与控制, 2016, 44(23): 61-67. Sun Boyu, Yu Jie, Mei Jun, et al.Combined dispatch model of adjustable load clusters considering response uncertainty[J]. Power System Protection and Control, 2016, 44(23): 61-67. [10] 高滢, 王芃, 薛友, 等. 计及需求侧管理的电—气集成能源系统协同规划[J]. 电力系统自动化, 2018, 42(13): 3-11. Gao Ying, Wang Peng, Xue You, et al.Collaboration planning of integrated electricity-gas energy systems considering demand side management[J]. Automation of Electric Power Systems, 2018, 42(13): 3-11. [11] 张钦, 王锡凡, 王建学, 等. 电力市场下需求响应研究综述[J]. 电力系统自动化, 2008, 32(3): 97-106. Zhang Qin, Wang Xifan, Wang Jianxue, et al.Survey of demand response research in deregulated electricity markets[J]. Automation of Electric Power Systems, 2008, 32(3): 97-106. [12] 张鹏, 李春燕, 张谦. 基于需求响应调度容量上报策略博弈的电网多代理系统调度模式[J]. 电工技术学报, 2017, 32(19): 170-179. Zhang Peng, Li Chunyan, Zhang Qian.A power system dispatch model based on game-theoretic multi-agent system demand response scheduling capacity reporting[J]. Transactions of China Electro- technical Society, 2017, 32(19): 170-179. [13] 李力行, 苗世洪, 孙丹丹, 等. 多利益主体参与下主动配电网完全信息动态博弈行为[J]. 电工技术学报, 2018, 33(15): 3499-3509. Li Lixing, Miao Shihong, Sun Dandan, et al.Dynamic games of complete information in active distribution network with multi-stakeholder partici- pation[J]. Transactions of China Electrotechnical Society, 2018, 33(15): 3499-3509. [14] 黄海涛, 胡学英, 李翔, 等. 实用化的激励性可中断负荷最优补偿定价模型[J]. 电网技术, 2014, 38(8): 2149-2154. Huang Haitao, Hu Xueying, Li Xiang, et al.A practicable optimal compensation pricing model for incentive interruptible load contract[J]. Power System Technology, 2014, 38(8): 2149-2154. [15] 李欣然, 姜学皎, 钱军, 等. 基于用户日负荷曲线的用电行业分类与综合方法[J]. 电力系统自动化, 2010, 34(10): 56-61. Li Xinran, Jiang Xuejiao, Qian Jun, et al.A classi- fying and synthesizing method of power consumer industry based on the daily load profile[J]. Auto- mation of Electric Power Systems, 2010, 34(10): 56-61. [16] 徐青山, 丁一帆, 颜庆国, 等. 大用户负荷调控潜力及价值评估研究[J]. 中国电机工程学报, 2017, 37(23): 6791-6800. Xu Qingshan, Ding Yifan, Yan Qingguo, et al.Research on evaluation of scheduling potentials and values on large consumers[J]. Proceedings of the CSEE, 2017, 37(23): 6791-6800. [17] 陈明照, 毛坚, 杜宗林, 等. 基于聚类法的工业用户需求侧管理(DSM)方案分析与研究[J]. 电力系统保护与控制, 2017, 45(7): 84-89. Chen Mingzhao, Mao Jian, Du Zonglin, et al.Analysis on demand side management scheme of industrial enterprise based on clustering method[J]. Power System Protection and Control, 2017, 45(7): 84-89. [18] Azari D, Torbaghan S S, Cappon H, et al.Assessing the flexibility potential of the residential load in smart electricity grids—a data-driven approach[C]// International Conference on the European Energy Market, Dresden, Germany, 2017: 1-6. [19] Sun Yanping, Gao Yajing, Yang Wenhai, et al.Research on user optimal aggregation based on demand response potential spectrum clustering analysis[J]. Journal of Engineering, 2017(13): 2152-2157. [20] Jiao Ruxuan, Wen Xiangming, Lu Zhaoming, et al.Dynamic user-centric clustering algorithm based on energy efficiency in cloud-RAN[C]//IEEE Inter- national Conference on Telecommunications, Barcelona, Spain, 2017: 1-7. [21] Pandey R K, Kumar S, Kumar C.Development of cluster algorithm for grid health monitoring[C]// International Conference on Control, Instrumentation, Energy & Communication, Kolkata, India, 2016: 377-381. [22] 张传辉, 田建艳, 高炜, 等. 基于模糊聚类分析的风电功率预测研究[J]. 太原理工大学学报, 2018, 49(1): 133-139. Zhang Chuanhui, Tian Jianyan, Gao Wei, et al.Research on wind power forecasting based on fuzzy clustering analysis[J]. Journal of Taiyuan University of Technology, 2018, 49(1): 133-139. [23] 李赢, 舒乃秋. 基于模糊聚类和完全二叉树支持向量机的变压器故障诊断[J]. 电工技术学报, 2016, 31(4): 64-70. Li Ying, Shu Naiqiu.Transformer fault diagnosis based on fuzzy clustering and complete binary tree support vector machine[J]. Transactions of China Electrotechnical Society, 2016, 31(4): 64-70. [24] Bensaid A M, Hall L O, Bezdek J C, et al.Validity guided(re) clustering with applications to image segmentation[J]. IEEE Transactions on Fuzzy Systems, 2002, 4(2): 112-123. [25] 钮永莉, 魏光杏. 一种改进的模糊聚类算法及其应用[J]. 长春工程学院学报: 自然科学版, 2018, 19(2): 96-98. Niu Yongli, Wei Guangxing.An improved fuzzy clustering algorithm and its application[J]. Journal of Changchun Institute of Technology: Natural Science Edition, 2018, 19(2): 96-98. [26] 陈兴荣, 姚宁宁. 基于能量距离推广的Ward聚类算法研究[J]. 统计与决策, 2017, 22(4): 21-25. Chen Xingrong, Yao Ningning.Research on Ward clustering method based on energy distance extending[J]. Statistics and Decision, 2017, 22(4): 21-25. [27] 陈舵, 李雪, 崔杜武, 等. 一种基于模糊度的聚类有效性函数[J]. 模式识别与人工智能, 2008, 21(1): 34-41. Chen Duo, Li Xue, Cui Duwu, et al.Cluster validity function based on fuzzy degree[J]. PR and AI, 2008, 21(1): 34-41. |