|
|
Fast Unloading Transient Response Buck Converter Using Coupled Inductor Based on Sequence Switching Control |
Zhao Zhaoyang, Lu Weiguo, Hu Zhiling, Ma Junwen, Zhou Luowei |
State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China |
|
|
Abstract In this paper, a fast unloading transient response Buck converter using coupled-inductor auxiliary circuits based sequence switching control scheme is proposed, so as to improve the unloading transient response of the time-optimal control (TOC) scheme. The proposed auxiliary coupled inductor circuit is controlled to connect in parallel with the input voltage source, so as to increase the inductor-current slew rate during an unloading transient. Furthermore, an ‘n+1’ sequence switching strategy is proposed to control the auxiliary coupled inductor. With the proposed control strategy the load transient event is divided into n+1 sub-periods, and in each sub-period, the capacitor-charge balance principle is used to determine the switching time sequence. In addition, the system voltage overshoot is determined by the maximum voltage overshoot in each of n+1 periods, and the settling time is shortened to the moment that the inductor current reached the output current firstly. Moreover, a 12V/3.3V synchronous Buck converter has been built to verify the feasibility of the proposed scheme.
|
Received: 01 July 2018
Published: 05 March 2020
|
|
|
|
|
[1] 张希, 沙金, 徐杨军, 等. 恒定导通时间电容电流控制Buck变换器研究[J]. 电工技术学报, 2015, 30(23): 18-23. Zhang Xi, Sha Jin, Xu Yangjun, et al.Research on the constant on-time capacitor current control of Buck converters[J]. Transactions of China Electro- technical Society, 2015, 30(23): 18-23. [2] 高峡, 冯全源. 一种适用于基于纹波的恒定导通时间架构Buck变换器片内纹波补偿方案[J]. 电工技术学报, 2018, 33(4): 892-899. Gao Xia, Feng Quanyuan.An on-chip ripple com- pensation scheme for ripple-based constant on-time architecture Buck converter[J]. Transactions of China Electrotechnical Society, 2018, 33(4): 892-899. [3] 崔恒丰, 周国华, 陈兴. 伪连续导电模式Buck变换器的动态参考电流控制策略[J]. 电工技术学报, 2017, 32(2): 246-254. Cui Hengfeng, Zhou Guohua, Chen Xing.Dynamic- reference-current control strategy for Buck converter in pesudo continuous conduction mode[J]. Transa- ctions of China Electrotechnical Society, 2017, 32(2): 246-254. [4] 徐杨, 钱挺. 恒定导通时间控制Buck变换器的间隔周期斜率补偿方案[J]. 电工技术学报, 2017, 32(4): 58-65. Xu Yang, Qian Ting.Every other cycle ramp com- pensation for Buck converters with constant on-time control[J]. Transactions of China Electrotechnical Society, 2017, 32(4): 58-65. [5] 魏业文, 李应智, 曹斌, 等. 含Buck电路的锂电池低功耗电量均衡技术研究[J]. 电工技术学报, 2018, 33(11): 2575-2583. Wei Yewen, Li Yingzhi, Cao Bin, et al.Research on power equalization of lithium-ion batteries with less-loss Buck chopper[J]. Transactions of China Electrotechnical Society, 2018, 33(11): 2575-2583. [6] 周国华, 许建平. 开关变换器调制与控制技术综述[J]. 中国电机工程学报, 2014, 34(6): 815-831. Zhou Guohua, Xu Jianping.A review of modulation and control techniques for switching converters[J]. Proceedings of the CSEE, 2014, 34(6): 815-831. [7] 章伟, 周国华, 刘啸天, 等. 具有快速负载瞬态响应的开关变换器数字均值电压控制方法[J]. 电工技术学报, 2018, 33(4): 856-864. Zhang Wei, Zhou Guohua, Liu Xiaotian, et al.Digital average voltage control technique for switching converter with fast load transient response[J]. Transa- ctions of China Electrotechnical Society, 2018, 33(4): 856-864. [8] 张凯暾, 周国华, 周述晗, 等. 峰值I2C控制Buck型LED驱动电源稳定性分析[J]. 电工技术学报, 2018, 33(8): 1793-1801. Zhang Kaitun, Zhou Guohua, Zhou Shuhan, et al.Stability analysis of peak I2C controlled LED power driver based on Buck converter[J]. Transactions of China Electrotechnical Society, 2018, 33(8): 1793-1801. [9] 卢伟国, 栗安鑫, 周雒维, 等. 零扰动补偿控制电流模式Buck变换器[J]. 电工技术学报, 2014, 29(8): 90-96. Lu Weiguo, Li Anxin, Zhou Luowei, et al.Zero- perturbation compensation control of current-mode Buck converter[J]. Transactions of China Electro- technical Society, 2014, 29(8): 90-96. [10] Huerta S C, Alou P, Oliver J Á, et al.Nonlinear control for DC-DC converters based on hysteresis of the cout current with a frequency loop to operate at constant frequency[J]. IEEE Transactions on Indu- strial Electronics, 2011, 58(3): 1036-1043. [11] 倪雨, 许建平, 王金平, 等. 滞环调制全局滑模控制Buck变换器设计[J]. 中国电机工程学报, 2010, 30(21): 1-6. Ni Yu, Xu Jianping, Wang Jinping, et al.Design of global sliding mode control Buck converter with hysteresis modulation[J]. Proceedings of the CSEE, 2010, 30(21): 1-6. [12] 刘晓东, 蒋昌虎, 邱亚杰, 等. Buck变换器动态过程电容充放电平衡控制策略[J]. 电机与控制学报, 2010, 14(6): 77-82. Liu Xiaodong,Jiang Changhu,Qiu Yajie,et al.A control algorithm based on capacitor charge balance during transient for Buck converter[J]. Electric Machines and Control, 2010, 14(6): 77-82. [13] Meyer E, Zhang Zhiliang, Liu Yanfei.An optimal control method for Buck converters using a practical capacitor charge balance technique[J]. IEEE Transa- ctions on Power Electronics, 2008, 23(4): 1802-1812. [14] 赵晋斌, 戴剑丰, 屈克庆. 基于电容电荷平衡的滞环控制策略[J]. 电工技术学报, 2015, 30(16): 63-69. Zhao Jinbin, Dai Jianfeng, Qu Keqing.A hysteresis control strategy based on capacitor charge balance[J]. Transactions of China Electrotechnical Society, 2015, 30(16): 63-69. [15] Singh R P, Khambadkone A M.A Buck-derived topology with improved step-down transient perfor- mance[J]. IEEE Transactions on Power Electronics, 2008, 23(6): 2855-2866. [16] Gu Yu, Zhang Donglai.Voltage regulator buck converter with a tapped inductor for fast transient response application[J]. IEEE Transactions on Power Electronics, 2014, 29(12): 6249-6254. [17] Ahsanuzzaman S M, Parayandeh A, Prodić A, et al.Load-interactive steered-inductor DC-DC converter with minimized output filter capacitance[C]//Applied Power Electronics Conference and Exposition, Palm Springs, CA, 2010: 980-985. [18] Kapat S, Shenoy P S, Krein P T.Near-null response to large-signal transients in an augmented Buck converter: a geometric approach[J]. IEEE Transa- ctions on Power Electronics, 2012, 27(7): 3319-3329. [19] Šviković V, Cortés J J, Alou P, et al.Multiphase current-controlled Buck converter with energy recycling output impedance correction circuit (OICC)[J]. IEEE Transactions on Power Electronics, 2015, 30(9): 5207-5222. |
|
|
|